Skip to main content
Log in

Syntheses, crystal structures and magnetic properties of four tetrahydrofuran-2,3,4,5-tetracarboxylato bridged transition metal complexes with N-donor heteroaromatic co-ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four tetrahydrofuran-2,3,4,5-tetracarboxylato complexes, Cu(bpy)(H2THFTC) (1), [Cu(phen)(H2THFTC)]·0.5H2O (2), [Mn(phen)(H2THFTC)]·0.5H2O (3) and [Co4(H2O)4(phen)4(THFTC)2]·4H2O (4) (H4THFTC = tetrahydrofuran-2,3,4,5-tetracarboxylic acid, phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) were synthesized in aqueous solution or under hydrothermal conditions, and characterized. In compounds 13, the metal centers are bridged by tetrahydrofuran-2,3,4,5-tetracarboxylate anions to form 1D chains, which are further assembled into 2D supramolecular layers based on interchain π···π interactions. Compound 4 consists of tetranuclear [Co4(H2O)4(phen)4(THFTC)2] complex molecules and lattice water molecules. The complex molecules are interconnected into hydrogen-bonded chains along the [100] direction, and interdigitation of phen ligands with interchain π···π stacking interactions assembles the hydrogen-bonded chains into 2D supramolecular layers parallel to the (010) plane. Variable-temperature magnetic measurements show an overall weak ferromagnetic behavior for complexes 1 and 2 and antiferromagnetic behavior for complexes 3 and 4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guillerm V, Kim D, Eubank JF, Luebke R, Liu XF, Adil K, Lah MS, Eddaoudi M (2014) Chem Soc Rev 43:6141–6172

    Article  CAS  Google Scholar 

  2. Lee S, Kapustin E, Yaghi OM (2016) Science 353:808–811

    Article  CAS  Google Scholar 

  3. Doherty CM, Buso D, Hill AJ, Furukawa S, Kitagawa S, Falcaro P (2014) Acc Chem Res 47:396–405

    Article  CAS  Google Scholar 

  4. Noro SI, Mizutani J, Hijikata Y, Matsuda R, Sato H, Kitagawa S, Sugimoto K, Inubushi Y, Kubo K, Nakamura T (2015) Nat Commun 6:5851

    Article  CAS  Google Scholar 

  5. Lu ZZ, Zhang R, Li YZ, Guo ZJ, Zheng HG (2011) J Am Chem Soc 133:4172–4174

    Article  CAS  Google Scholar 

  6. Zhai XS, Zhu WG, Xu W, Huang YJ, Zheng YQ (2015) CrystEngComm 17:2376–2388

    Article  CAS  Google Scholar 

  7. Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P (2016) Angew Chem Int Ed 55:4938–4942

    Article  CAS  Google Scholar 

  8. Beatty AM (2003) Coord Chem Rev 246:131–140

    Article  CAS  Google Scholar 

  9. Han LL, Zhang XY, Chen JS, Li ZH, Sun DF, Wang XP, Sun S (2014) Cryst Growth Des 14:2230–2239

    Article  CAS  Google Scholar 

  10. Stock N, Biswas S (2012) Chem Rev 112:933–969

    Article  CAS  Google Scholar 

  11. Qi JL, Zheng YQ, Xu W, Zhu HL, Lin JL, Chang HS (2013) CrystEngComm 15:10618–10630

    Article  CAS  Google Scholar 

  12. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM (2016) Chem Rev 116:12466–12535

    Article  CAS  Google Scholar 

  13. Paz FAA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J (2012) Chem Soc Rev 41:1088–1110

    Article  Google Scholar 

  14. Zhang L, Zhang J, Li ZJ, Qin YY, Lin QP, Yao YG (2009) Chem Eur J 15:989–1000

    Article  CAS  Google Scholar 

  15. Zhang L, Lin QP, Li ZJ, Zhang J, Qin YY, Cheng JK, Yao YG (2009) CrystEngComm 11:1201–1203

    Article  CAS  Google Scholar 

  16. Ai WT, He HY, Liu LJ, Liu QJ, Lv XL, Li J, Sun DF (2008) CrystEngComm 10:1480–1486

    Article  CAS  Google Scholar 

  17. Liu CS, Sañudo EC, Hu M, Zhou LM, Guo LQ, Ma ST, Gao LJ, Fang SM (2010) CrystEngComm 12:853–865

    Article  CAS  Google Scholar 

  18. Hanson K, Calin N, Bugaris D, Scancella M, Sevov SC (2004) J Am Chem Soc 126:10502–10503

    Article  CAS  Google Scholar 

  19. Wang XY, Sevov SC (2007) Chem Mater 19:3763–3766

    Article  CAS  Google Scholar 

  20. Wang XY, Scancella M, Sevov SC (2007) Chem Mater 19:4506–4513

    Article  CAS  Google Scholar 

  21. Thuéry P, Villiers C, Jaud J, Ephritikhine M, Masci B (2004) J Am Chem Soc 126:6838–6839

    Article  Google Scholar 

  22. Thuéry P (2013) CrystEngComm 15:6533–6545

    Article  Google Scholar 

  23. Zheng YQ, Han XY, Zhu HL (2010) Polyhedron 29:911–919

    Article  CAS  Google Scholar 

  24. Sheldrick GM (1997) SHELXS–97, Programm zur Lösung von Kristallstrukturen, Göttingen

  25. Sheldrick GM (1997) SHELXL–97, Programm zur Verfeinerung von Kristallstrukturen, Göttingen

  26. Lv YQ (2008) Acta Cryst E64:m1245

    Google Scholar 

  27. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 6th edn. Interscience-Wiley, New York

    Google Scholar 

  28. Persson I, Persson P, Sandström M, Ullström AS (2002) J Chem Soc, Dalton Trans 1256–1265

  29. Zhang L, Li ZJ, Lin QP, Zhang J, Yin PX, Qin YY, Cheng JK, Yao YG (2009) CrystEngComm 11:1934–1939

    Article  CAS  Google Scholar 

  30. Asha KS, Khoj R, Ahmed N, Nath R, Mandal S (2017) Cryst Growth Des 17:982–989

    Article  CAS  Google Scholar 

  31. Clegg W, Holcroft JM, Martin NC (2015) CrystEngComm 17:2857–2871

    Article  CAS  Google Scholar 

  32. Berry JF, Cotton FA, Liu CY, Lu TB, Murillo CA, Tsukerblat BS, Villagrán D, Wang XP (2005) J Am Chem Soc 127:4895–4902

    Article  CAS  Google Scholar 

  33. Shova S, Novitchi G, Gdaniec M, Caneschi A, Gatteschi D, Korobchenko L, Voronkova VK, Simonov YA, Turta C (2002) Eur J Inorg Chem 3313–3318

  34. Zhuang GM, Li XB, Wen YQ, Tian CY, Gao EQ (2014) Eur J Inorg Chem 3488–3498

  35. Massoud SS, Broussard KT, Mautner FA, Vicente R, Saha MK, Bernal I (2008) Inorg Chim Acta 361:123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Public Projects of Zhejiang Province (2017C33008) and Ningbo Natural Science Foundation (2017A610068). Honest thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qing Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2017_184_MOESM1_ESM.docx

Crystallographic data for compounds 14 deposited with the Cambridge Crystallographic Data Center, CCDC-1515633 (1), -1515634 (2), -1515635 (3) and -1515636 (4). [CCDC, 12 Union Road, Cambridge CB2 1EZ, United Kingdom. Fax: (44)1223-336-033. E-mail: deposit@ccdc.cam.ac.uk. Website: http://www.ccdc.cam.ac.uk]. Selected interatomic distances and bond angles tables are described in Tables S2.1 to S2.3 for compounds 14, PXRD patterns, infrared spectra and TG curves of complexes 14 are showed in Figs. S1–S3 (DOCX 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, LX., Xu, W., Han, XY. et al. Syntheses, crystal structures and magnetic properties of four tetrahydrofuran-2,3,4,5-tetracarboxylato bridged transition metal complexes with N-donor heteroaromatic co-ligands. Transit Met Chem 42, 763–772 (2017). https://doi.org/10.1007/s11243-017-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0184-2

Navigation