Skip to main content
Log in

Base hydrolysis of tris(3-(2-pyridyl)-5,6-bis(4-phenyl sulphonic acid)-1,2,4-triazine)iron(II) in aqueous, SDS and CTAB media: kinetic and mechanistic study

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of base hydrolysis of tris(3-(2-pyridyl)-5,6-bis(4-phenyl sulphonic acid)-1,2,4-triazine)iron(II), \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\) have been studied in aqueous, sodium dodecyl sulphate (SDS) and cetyltrimethyl ammonium bromide (CTAB) media at 25, 35 and 45 °C under pseudo-first-order conditions, i.e. \(\left[ {\text{OH}^{ - } } \right]\) ≫ \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\). The reaction is first order each in \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\) and hydroxide ion. The rate increases with increasing ionic strength in aqueous and SDS media, whereas this parameter has little effect in CTAB. In SDS medium, the rate-determining step involves the reaction between \(\left[ {\text{OH}^{ - } } \right]\) and \({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\), whereas in CTAB medium, it involves reaction between a neutral ion pair, {\({\text{Fe}}({\text{PDTS}})_{3}^{4 - }\)·4CTA+} and \(\left[ {\text{OH}^{ - } } \right]\) ions. The specific rate constants and thermodynamic parameters (E a, ΔH #, ΔS # and ΔG #35°C ) have been evaluated in all three media. The near equal values of ΔG #35°C obtained in aqueous and SDS media suggest that these reactions occur essentially by the same mechanism. Slightly lower ΔG #35°C values in CTAB medium can be attributed to a higher concentration of reactants in the Stern layer. The reaction is inhibited in SDS medium but catalysed in CTAB. The former can be attributed to the anionic surfactant creating more repellent space between the reactants. Catalysis in CTAB medium is ascribed to electrophilic and hydrophilic interactions between hydroxide ion/substrate with the cationic Stern layer, resulting in increased local concentrations of both reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kundu A, Dasmandal S, Rudra S, Mahapatra A (2015) J Mol Liq 209:99–103

    Article  CAS  Google Scholar 

  2. Abdel-Rahman RM, Makki MS, Ali TE, Ibrahim MA (2015) J Heterocycl Chem 52:1595–1607

    Article  CAS  Google Scholar 

  3. Kundu A, Dasmandal S, Majumdar T, Mahapatra A (2014) Colloids Surf A Phys Chem Eng Asp 452:148–153

    Article  CAS  Google Scholar 

  4. Mandal HK, Majumdar T, Mahapatra A (2011) Int J Chem Kinet 43:579–589

    CAS  Google Scholar 

  5. Gharib A, Ezz-Eldin A, Gosal N, Burgess J (2001) Croat Chem Acta 74:545–558

    CAS  Google Scholar 

  6. Mandal HK, Dasmandal S, Mahapatra A (2016) J Disp Sci Technol 37:555–564

    Article  CAS  Google Scholar 

  7. Gibbs CR (1976) Anal Chem 48:1197–1201

    Article  CAS  Google Scholar 

  8. Stookey LL (1970) Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  9. Ratnam S, Anipindi NR (2012) Trans Met Chem 37:453–462

    Article  CAS  Google Scholar 

  10. Bellam R, Anipindi NR (2014) Trans Met Chem 39:311–326

    Article  CAS  Google Scholar 

  11. Bellam R, Jaganyi D (2017) Int J Chem Kinet 49:182–196

    Article  CAS  Google Scholar 

  12. Bellam R, Sivamadhavi S, Ramakrishna S, Mambanda A, Jaganyi D, Anipindi NR (2017) J Coord Chem 70:1893–1909

    Article  CAS  Google Scholar 

  13. Burgess J, Hubbard CD, Miyares PH, Cole TL, Dasgupta TP, Leebert S (2005) Trans Met Chem 30:957–963

    Article  CAS  Google Scholar 

  14. Baxendale J, George P (1950) Trans Faraday Soc 46:736–744

    Article  CAS  Google Scholar 

  15. Baxendale J, George P (1950) Trans Faraday Soc 46:55–63

    Article  CAS  Google Scholar 

  16. Krumholz P (1949) Nature 163:724–725

    Article  CAS  Google Scholar 

  17. Lee T, Kolthoff I, Leussing D (1948) J Am Chem Soc 70:3596–3600

    Article  CAS  Google Scholar 

  18. Bellam R, Raju GG, Anipindi NR, Jaganyi D (2016) Trans Met Chem 41:271–278

    Article  CAS  Google Scholar 

  19. Bellam R, Anipindi NR (2012) Trans Met Chem 37:489–495

    Article  CAS  Google Scholar 

  20. Origin 7.5™ SRO, v7.5714 (B5714) (2003) Origin Lab Corporation, Northampton One, Roundhouse Plaza, Northampton, MA, 01060 USA

  21. Atwood JD (1997) Inorganic and organometallic reaction mechanisms. Whiley-VCH Inc, NY, pp 43–61

    Google Scholar 

  22. Laidler K (2003) Physical chemistry. Houghton Mifflin Company, Boston

    Google Scholar 

  23. Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. VCH, New York

    Google Scholar 

  24. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  25. Blandamer MJ, Burgess J, Wellings P (1979) Trans Met Chem 4:95–97

    Article  CAS  Google Scholar 

  26. Desando M, Reeves L (1986) Can J Chem 64:1817–1822

    Article  CAS  Google Scholar 

  27. Berezin IV, Martinek K, Yatsimirskii AK (1973) Russ Chem Rev 42:787–802

    Article  Google Scholar 

  28. Eyring H (1935) J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  29. Atwood JD (1997) Inorganic and organometallic reaction mechanisms, 2nd edn. Wiley, New York, pp 43–61

    Google Scholar 

  30. Gangwar S, Rafiquee M (2007) Int J Chem Kinet 39:638–644

    Article  CAS  Google Scholar 

  31. Berezin IV, Martinek K, Yatsimirsky A (1973) Usp Khim 42:1729–1756

    CAS  Google Scholar 

  32. Menger FM, Portnoy CE (1967) J Am Chem Soc 89:4698–4703

    Article  CAS  Google Scholar 

  33. Burgess J (1967) J Chem Soc A Inorg Phys Theor. doi:10.1039/J19670000431

    Google Scholar 

  34. Moroi Y, Braun AM, Graetzel G (1979) J Am Chem Soc 101:567–572

    Article  CAS  Google Scholar 

  35. Holyer R, Hubbard C, Kettle S, Wilkins R (1966) Inorg Chem 5:622–625

    Article  CAS  Google Scholar 

  36. Burgess J, Prince R (1963) J Am Chem Soc (Resumed) 12:5752–5758

    Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully indebted to the University Grants Commission, New Delhi, India, and University of KwaZulu-Natal, South Africa, for financial support to Rajesh Bellam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageswara Rao Anipindi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellam, R., Anipindi, N.R. & Jaganyi, D. Base hydrolysis of tris(3-(2-pyridyl)-5,6-bis(4-phenyl sulphonic acid)-1,2,4-triazine)iron(II) in aqueous, SDS and CTAB media: kinetic and mechanistic study. Transit Met Chem 42, 719–725 (2017). https://doi.org/10.1007/s11243-017-0179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0179-z

Navigation