Skip to main content
Log in

A thiosemicarbazone–palladium(II)–imidazole complex as an efficient pre-catalyst for Suzuki–Miyaura cross-coupling reactions at room temperature in aqueous media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A Pd(II) complex of two sterically crowded ligands, specifically an N,S-donor thiosemicarbazone and an N-donor imidazole, has been synthesized and characterized by physicochemical and spectroscopic methods. X-ray single-crystal analysis revealed that the coordination geometry around the palladium center is distorted square planar, and the chloride ligand is involved in intermolecular bifurcated X–H···Y-type (where X = C, N and Y = Cl) hydrogen bonding. This complex proved to be a highly active and retrievable pre-catalyst for additive-free Suzuki–Miyaura cross-coupling reactions of arylboronic acids with aryl bromides or chlorides at room temperature and 60 °C, respectively. The reactions require a low catalyst loading and the complex is converted to ~1.5–2.0 nm-sized Pd nanoparticles (probably the real catalyst). The catalyst can be reused up to seven times without significant loss in activity. Since the reaction proceeds under mild conditions in aqueous medium and the catalyst is recoverable, it provides an environmentally benign alternative to the existing protocols for Suzuki–Miyaura reactions.

Graphical abstract

Biaryls can be synthesized in high yield under greener reaction conditions in the presence of efficient pre-catalyst, thiosemicarbazone–palladium(II)–imidazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miyaura N, Suzuki A (1979) J Chem Soc Chem Comm 19:866–867

    Article  Google Scholar 

  2. Miyaura N, Yamadnandea K, Suzuki A (1979) Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  3. Suzuki A (2011) Angew Chem Int Ed 50:6722–6737

    Article  CAS  Google Scholar 

  4. Fihri A, Bouhrara M, Nekoueishahraki B, Basset JM, Polshettiwar V (2011) Chem Soc Rev 40:5181–5203

    Article  CAS  Google Scholar 

  5. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  6. Das P, Linert W (2016) Coord Chem Rev 311:1–23

    Article  CAS  Google Scholar 

  7. Paul S, Islam MM, Islam SM (2015) RSC Adv 5:42193–42221

    Article  CAS  Google Scholar 

  8. Begum T, Mondal M, Borpuzari MP, Kar R, Kalita G, Gogoi PK, Bora U (2017) Dalton Trans 46:539–546

    Article  CAS  Google Scholar 

  9. Marziale AN, Faul SH, Reiner T, Schneider S, Eppinger J (2010) Green Chem 12:35–38

    Article  CAS  Google Scholar 

  10. Sabounchei SJ, Ahmadi M, Panahimehr M, Bagherjeri FA, Nasri Z (2014) J Mol Catal A 249:383–384

    Google Scholar 

  11. Schaarschmidt D, Lang H (2011) ACS Catal. 1:411–416

    Article  CAS  Google Scholar 

  12. Monnereau L, Mall HE, Semeril D, Matt D, Toupet L (2014) Eur J Inorg Chem 2014:1364–1372

    Article  CAS  Google Scholar 

  13. Li JH, Liu WH (2004) J Org Chem 6:2809–2811

    CAS  Google Scholar 

  14. Blakemore JD, Chalkley MJ, Farnaby JH, Guard LM, Hazari N, Incarvito CD, Luzik ED, Suh HW (2011) Organometallics 30:1818–1829

    Article  CAS  Google Scholar 

  15. Liu T, Zhao X, Shen Q, Lu L (2012) Tetrahedron 68:6535–6547

    Article  CAS  Google Scholar 

  16. Susanto W, Chu CY, Ang WJ, Chou TC, Lo LC, Lam Y (2012) Green Chem 14:77–80

    Article  CAS  Google Scholar 

  17. Mino T, Shirae Y, Sakamoto M, Fijita T (2005) J Org Chem 70:2191–2194

    Article  CAS  Google Scholar 

  18. Xu C, Gong JF, Guo T, Zhang YH, Wu YJ (2008) J Mol Catal A Chem 279:69–76

    Article  CAS  Google Scholar 

  19. Hanhan ME, Martinez-Manez R, Ros-Lis RJ (2012) Tetrahedron Lett 53:2388–2391

    Article  CAS  Google Scholar 

  20. Kostas ID (2008) Inorg Chim Acta 361:1562–1565

    Article  Google Scholar 

  21. Tenchiu AC, Ventouri IK, Ntasi G, Palles D, Kokotos G, Demertzi DK, Kostas ID (2015) Inorg Chim Acta 435:142–146

    Article  CAS  Google Scholar 

  22. Verma PR, Mandal S, Gupta P, Mukhopadhyay P (2013) Tetrahedron Lett 54:4914–4917

    Article  CAS  Google Scholar 

  23. Yan H, Chellan P, Li T, Mao J, Chibale K, Smith GS (2013) Tetrahedron Lett 54:154–157

    Article  CAS  Google Scholar 

  24. Dutta J, Bhattacharya S (2013) RSC Advances 3:10707–10721

    Article  CAS  Google Scholar 

  25. Dutta J, Datta S, Seth DK, Bhattacharya S (2012) RSC Adv 2:11751–11763

    Article  CAS  Google Scholar 

  26. Paula P, Datta S, Haldera S, Acharyya R, Basuli F, Butcher RJ, Peng SM, Lee GH, Castineiras A, Drew MGB, Bhattacharya S (2011) J Mol Catal A Chem 344:62–73

    Article  Google Scholar 

  27. Pandiarajan D, Ramesh R, Liu Y, Suresh R (2013) Inorg Chem Commun 33:33–37

    Article  CAS  Google Scholar 

  28. Lobana TS, Kumari P, Hundal G, Butcher RJ, Castineiras A, Akitsu T (2013) Inorg Chim Acta 394:605–615

    Article  CAS  Google Scholar 

  29. Pelosi G, Bisceglie F, Bignami Ronzi P, Schiavone P, Re MC, Casoli C, Pilotti E (2010) J Med Chem 53:8765–8769

    Article  CAS  Google Scholar 

  30. Zhang WH, Chien SW, Hor TSA (2011) Coord Chem Rev 255:1991–2024

    Article  CAS  Google Scholar 

  31. Kalinowski J, Fattori V, Cocchi M, Williams JAG (2011) Coord Chem Rev 255:2401–2425

    Article  CAS  Google Scholar 

  32. Guerchais V, Fillaut JL (2011) Coord Chem Rev 255:2448–2457

    Article  CAS  Google Scholar 

  33. Borah G, Boruah D, Sarmah G, Bharadwaj SK, Bora U (2013) Appl Organomet Chem 27:688–694

    Article  CAS  Google Scholar 

  34. Dewan A, Bora U, Borah G (2014) Tetrahedron Lett 55:1689–1692

    Article  CAS  Google Scholar 

  35. Gogoi A, Dewan A, Borah G, Bora U (2015) New J Chem 39:3341–3344

    Article  CAS  Google Scholar 

  36. Borah G, Sarmah PP, Boruah D (2015) Bull Korean Chem Soc 36:1226–1230

    CAS  Google Scholar 

  37. Saikia B, Ali AA, Boruah PR, Sarma D, Barual NC (2015) New J Chem 39:2440–2443

    Article  CAS  Google Scholar 

  38. Agarwala BV, Reddy PSN (1988) Trans Met Chem 13:187–189

    Article  CAS  Google Scholar 

  39. Tang YQ, Lu M, Shao LX (2011) J Organomet Chem 696:3741–3744

    Article  CAS  Google Scholar 

  40. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New York

    Google Scholar 

  41. Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, Oxford

    Google Scholar 

  42. Freytag M, Jones PG (2000) Chem Commun 4:277–278

    Article  Google Scholar 

  43. Fiedler D, Leung DH, Bergman RG, Raymond KN (2005) Acc Chem Res 38:351–360

    Article  Google Scholar 

  44. Watson JD, Crick FHC (1953) Nature 171:737–738

    Article  CAS  Google Scholar 

  45. Gogoi N, Begum T, Bora U, Gogoi PK (2015) RSC Adv 5:95344

    Article  CAS  Google Scholar 

  46. Kitamura Y, Sako S, Tsutsui A, Monguchi Y, Maegawa T, Kitade Y, Sajiki H (2010) Adv Synth Catal 352:718–730

    Article  CAS  Google Scholar 

  47. Pathak A, Singh AP (2016) J Porous Mater. doi:10.1007/s10934-016-0266-0

    Google Scholar 

  48. Yang S, Dong J, Yao Z, Shen C, Shi X, Tian Y, Lin S, Zhang X (2014) Sci Rep 4:4501

    Article  Google Scholar 

  49. Jin Y, Zhao J, Li F, Jia W, Liang D, Chen H, Li R, Hu J, Ni J, Wu T, Zhong D (2016) Electrochim Acta 220:83–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the analytical services provided by SAIF IISC, Bangalore; SAIF, CIL, Punjab University, Chandigarh; Department of Chemical Sciences, Tezpur University, Assam, India; SAIF, IIT Madras; STIC, Kochi University, Kochi and IIT, Kanpur. The authors are also grateful to UGC, New Delhi, India, for financial support under the SAP-DRS-I program (2016–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetika Borah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, J., Gogoi, R., Gogoi, N. et al. A thiosemicarbazone–palladium(II)–imidazole complex as an efficient pre-catalyst for Suzuki–Miyaura cross-coupling reactions at room temperature in aqueous media. Transit Met Chem 42, 683–692 (2017). https://doi.org/10.1007/s11243-017-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0174-4

Navigation