Skip to main content

Advertisement

Log in

Copper(II)-complex functionalized magnetite nanoparticles: a highly efficient heterogeneous nanocatalyst for the synthesis of 5-arylidenthiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-one

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (MNPs) have proved to be a useful support for heterogeneous catalysis. We have synthesized Fe3O4 MNPs functionalized with a copper(II) complex, and tested the resulting material as a heterogeneous nanocatalyst. The catalyst was tested for aldol condensation reactions between aliphatic/aromatic aldehydes and rhodanine or thiazolidine-2,4-dione (TZD) derivatives under reflux in ethanol, giving the target products in high yield. Environmentally benign chemistry, short reaction times, simple work-up, excellent yields, and the reusability of the new nanocatalyst are beneficial features of the present study. The nanocatalyst was characterized by scanning electron microscopy, vibrating sample magnetometery, thermogravimetry, X-ray diffraction, and energy-dispersive X-ray analyses. The data showed that the magnetic nanoparticles are super-paramagnetic with a size range of 10–20 nm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK (2012) Bioorg Med Chem 20:3378–3395

    Article  CAS  Google Scholar 

  2. Tomašić T, Peterlin Mašič L (2012) Expert Opin Drug Discov 7:549–560

    Article  Google Scholar 

  3. Devinyak O, Zimenkovsky B, Lesyk R (2012) Curr Top Med Chem 12:2763–2784

    Article  CAS  Google Scholar 

  4. Tomasic T, Masic LP (2009) Curr Med Chem 16:1596–1629

    Article  CAS  Google Scholar 

  5. Johnson SL, Chen LH, Harbach R, Sabet M, Savinov A, Cotton NJ, Strongin A, Guiney D, Pellecchia M (2008) Chem Biol Drug Des 71:131–139

    Article  CAS  Google Scholar 

  6. Shelke KF, Sapkal SB, Kakade GK, Sadaphal SA, Shingate BB, Shingare MS (2010) Green Chem Lett Rev 3:17–21

    Article  CAS  Google Scholar 

  7. Sandhu JS (2013) Org Med Chem Lett 3:2

    Article  Google Scholar 

  8. Metwally NH, Rateb NM, Zohdi HF (2011) Green Chem Lett Rev 4:225–228

    Article  CAS  Google Scholar 

  9. Mahalle S, Ligampalle D, Mane R (2009) Heteroatom Chem 20:151–156

    Article  CAS  Google Scholar 

  10. Bruno G, Costantino L, Curinga C, Maccari R, Monforte F, Nicolo F, Vigorita MG (2002) Bioorg Med Chem 10:1077–1084

    Article  CAS  Google Scholar 

  11. Nitsche C, Klein CD (2012) Tetrahedron Lett 53:5197–5201

    Article  CAS  Google Scholar 

  12. Shah S, Singh B (2012) Bioorg Med Chem Lett 22:5388–5391

    Article  CAS  Google Scholar 

  13. Johnson JS, Evans DA (2000) Acc Chem Res 33:325–335

    Article  CAS  Google Scholar 

  14. Jiang G, Gu X, Jiang G, Chen T, Zhan W, Tian S (2015) Sens Actuators 209:122–130

    Article  CAS  Google Scholar 

  15. Corma A, Garcia H (2006) Adv Synth Catal 348:1391–1412

    Article  CAS  Google Scholar 

  16. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371–3393

    Article  CAS  Google Scholar 

  17. Narani A, Marella RK, Ramudu P, Rao KSR, Burri DR (2014) RSC Adv 4:3774–3781

    Article  CAS  Google Scholar 

  18. Zhang F, Wu X, Liang C, Li X, Wang Z, Li H (2014) Green Chem 16:3768–3777

    Article  CAS  Google Scholar 

  19. Balu AM, Baruwati B, Serrano E, Cot J, Garcia-Martinez J, Varma RS, Luque R (2011) Green Chem 13:2750–2758

    Article  CAS  Google Scholar 

  20. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  21. Faraji M, Yamini Y, Rezaee M (2010) J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  22. Wagner AM, Knezevic CE, Wall JL, Sun VL, Buss JA, Allen LT, Wenzel AG (2012) Tetrahedron Lett 53:833–836

    Article  CAS  Google Scholar 

  23. Wang H, Zhang W, Shentu B, Gu C, Weng Z (2012) J Appl Polym Sci 125:3730–3736

    Article  CAS  Google Scholar 

  24. Shahbazi F, Amani K (2014) Catal Commun 55:57–64

    Article  CAS  Google Scholar 

  25. Afradi M, Foroughifar N, Pasdar H, Moghanian H (2016) RSC Adv 64:59343–59351

    Article  Google Scholar 

  26. Kumar B, Nanjan M, Suresh B, Karvekar M, Adhikary L (2006) J Heterocycl Chem 43:897–903

    Article  CAS  Google Scholar 

  27. Riyaz S, Indrasena A, Naidu A, Dubey P (2014) Synth Commun 44:368–373

    Article  CAS  Google Scholar 

  28. Russell AJ, Westwood IM, Crawford MH, Robinson J, Kawamura A, Redfield C, Laurieri N, Lowe ED, Davies SG, Sim E (2009) Bioorg Med Chem 17:905–918

    Article  CAS  Google Scholar 

  29. Gränacher C, Gerö M, Ofner A, Klopfenstein A, Schlatter E (1923) Helv Chim Acta 6:458–467

    Article  Google Scholar 

  30. Gong K, He Z-W, Xu Y, Fang D, Liu Z-L (2008) Monatsh Chem 139:913–915

    Article  CAS  Google Scholar 

  31. Zvarec O, Polyak SW, Tieu W, Kuan K, Dai H, Pedersen DS, Morona R, Zhang L, Booker GW, Abell AD (2012) Bioorg Med Chem Lett 22:2720–2722

    Article  CAS  Google Scholar 

  32. Drawanz BB, Ribeiro CS, Masteloto HG, Neuenfeldt PD, Pereira CM, Siqueira GM, Cunico W (2014) Ultrason Sonochem 21:1615–1617

    Article  CAS  Google Scholar 

  33. Mobinikhaledi A, Foroughifar N, Khajeh-Amiri A (2016) React Kinet Mech Cat 117:59–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankful the Mazandaran university of medical sciences for providing laboratory facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Foroughifar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan, M., Foroughifar, N., Pasdar, H. et al. Copper(II)-complex functionalized magnetite nanoparticles: a highly efficient heterogeneous nanocatalyst for the synthesis of 5-arylidenthiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-one. Transit Met Chem 42, 543–552 (2017). https://doi.org/10.1007/s11243-017-0159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0159-3

Navigation