Skip to main content
Log in

Solvothermal syntheses, crystal structures, and optical and thermal properties of transition metal selenidostannates

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four organic–inorganic hybrid selenidostannates, namely [H2en][H2dien][Fe(dien)2]2(Sn2Se6)2 (1), [Fe(dien)2]2Sn2Se6 (2), [Fe(dien)2]FeSnSe4 (3), and [Mn(dien)2]MnSnSe4 (4) (en = ethylenediamine; dien = diethylenetriamine), were prepared in different solvents under solvothermal conditions. Complexes 1 and 2 consist of discrete [Sn2Se6]4− and [Fe(dien)2]2+ ions, as well as organic cations [H2en]2+ and [H2dien]2+ in 1. The dimeric [Sn2Se6]4− anion is formed by two SnSe4 tetrahedra via edge-sharing. Complexes 3 and 4 are composed of one-dimensional polyanions [TMSnSe 2−4 ] n plus [TM(dien)2]2+ counter cations (TM = Fe, Mn). In the [TMSnSe 2−4 ] n anionic chain, the TM and Sn atoms are located at the same metal site with a ratio of 0.5/0.5. The TM1/2Sn1/2Se4 tetrahedra are interlinked via edge-sharing, forming the heterometallic [TMSnSe 2−4 ] n polymeric anion. The [TM(dien)2]2+ cations in 12 and 34 have u-fac and mer configurations, respectively. In all four crystal structures, the anions and cations are connected into extended structures via weak N–H···Se hydrogen bonds. The band gaps of complexes 14 calculated from the solid-state UV–vis diffuse reflectance spectra were at 2.58, 2.60, 2.21, and 2.25 eV, respectively. Thermogravimetric analyses show that complex 1 decomposes in three steps, while complexes 24 each decompose in one step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li J, Chen Z, Wang RJ, Proserpio DM (1999) Coord Chem Rev 190–192:707–975

    Article  Google Scholar 

  2. Zimmermann C, Anson CE, Weigend F, Clérac R, Dehnen S (2005) Inorg Chem 44:5686–5695

    Article  CAS  Google Scholar 

  3. Liao JH, Marking GM, Hsu KF, Matsushita Y, Ewbank MD, Borwick R, Cunningham P, Rosker MJ, Kanatzidis MG (2003) J Am Chem Soc 125:9484–9493

    Article  CAS  Google Scholar 

  4. Zheng NF, Bu XH, Wang B, Feng PY (2002) Science 298:2366–2369

    Article  CAS  Google Scholar 

  5. Dehnen S, Zimmermann C (2002) Z Anorg Allg Chem 628:2463–2469

    Article  CAS  Google Scholar 

  6. Pienack N, Näther C, Bensch W (2009) Eur J Inorg Chem 7:937–946

    Article  Google Scholar 

  7. Han XH, Meng JL, Xu J, Liu XJ, Liu D, Wang C (2016) Inorg Chem Commun 63:42–47

    Article  CAS  Google Scholar 

  8. Xiong WW, Miao JW, Ye KQ, Wang Y, Liu B, Zhang QC (2015) Angew Chem Int Ed 54:546–550

    CAS  Google Scholar 

  9. Du CF, Li JR, Feng ML, Zou GD, Shen NN, Huang XY (2015) Dalton Trans 44:7364–7372

    Article  CAS  Google Scholar 

  10. Lin YM, Dehnen S (2011) Inorg Chem 50:7913–7915

    Article  CAS  Google Scholar 

  11. Tang CY, Wang F, Lu JL, Jia DX, Jiang WQ, Zhang Y (2014) Inorg Chem 53:9267–9273

    Article  CAS  Google Scholar 

  12. Luo HB, Ren LT, Ning WH, Liu SX, Liu JL, Ren XM (2016) Adv Mater 28:1663–1667

    Article  CAS  Google Scholar 

  13. Zhang B, Li J, Du CF, Feng ML, Huang XY (2016) Inorg Chem 55:10855–10858

    Article  CAS  Google Scholar 

  14. Xiong WW, Li PZ, Zhou TH, Tok AIY, Xu R, Zhao YL, Zhang QC (2013) Inorg Chem 52:4148–4150

    Article  CAS  Google Scholar 

  15. Xiong WW, Miao JW, Li PZ, Zhao YL, Liu B, Zhang QC (2014) J Solid State Chem 218:146–150

    Article  CAS  Google Scholar 

  16. Manos MJ, Jang JI, Ketterson JB, Kanatzidis MG (2008) Chem Commun 8:972–974

    Article  Google Scholar 

  17. Wang YL, Feng ML, Wang KY, Li JR, Wang ZP, Zou GD, Huang XY (2013) Inorg Chem Commun 33:10–14

    Article  CAS  Google Scholar 

  18. Lu JL, Shen YL, Wang F, Tang CY, Zhang Y, Jia DX (2015) Z Anorg Allg Chem 641:561–567

    Article  CAS  Google Scholar 

  19. Wendlandt WW, Hecht HG (1966) Reflectance Spectroscopy. Interscience Publishers, New York

    Google Scholar 

  20. Sheldrick GM (1997) SHELXS-97, program for structure solution. Universität of Göttingen, Germany

    Google Scholar 

  21. Sheldrick GM (1997) SHELXL-97, Program for structure refinement. Universität of Göttingen, Germany

    Google Scholar 

  22. Liang JJ, Chen JF, Zhao J, Pan YL, Zhang Y, Jia DX (2011) Z Anorg Allg Chem 637:445–449

    Article  CAS  Google Scholar 

  23. Stähler R, Näther C, Bensch W (2001) Eur J Inorg Chem 7:1835–1840

    Article  Google Scholar 

  24. Kiebach R, Bensch W, Hoffmann RD, Pöttgen R (2003) Z Anorg Allg Chem 629:532–538

    Article  CAS  Google Scholar 

  25. Keene FR, Searle GH (1972) Inorg Chem 11:148–156

    Article  CAS  Google Scholar 

  26. Yoshikawa Y, Yamasaki K (1972) Bull Chem Soc Jpn 45:179–183

    Article  CAS  Google Scholar 

  27. Xiong WW, Li PZ, Zhou TH, Zhao YL, Xu R, Zhang QC (2013) J Solid State Chem 204:86–90

    Article  CAS  Google Scholar 

  28. Lekse JW, Leverett BM, Lake CH, Aitken JA (2008) J Solid State Chem 181:3217–3222

    Article  CAS  Google Scholar 

  29. Lekse JW, Moreau MA, McNerny KL, Yeon J, Halasyamani PS, Aitken JA (2009) Inorg Chem 48:7516–7518

    Article  CAS  Google Scholar 

  30. Brandmayer MK, Clerac R, Weigend F, Dehnen S (2004) Chem Eur J 10:5147–5157

    Article  CAS  Google Scholar 

  31. Thiele G, Peter S, Schwarzer M, Ruzin E, Clerac R, Staesche H, Rosser C, Roling B, Dehnen S (2012) Inorg Chem 51:3349–3351

    Article  CAS  Google Scholar 

  32. Pienack N, Möller K, Näther C, Bensch W (2007) Solid State Sci 9:1110–1114

    Article  CAS  Google Scholar 

  33. Chen JF, Jin QY, Pan YL, Zhang Y, Jia DX (2009) Chem Commun 46:7212–7214

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21171123) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingxian Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Liu, S., Han, J. et al. Solvothermal syntheses, crystal structures, and optical and thermal properties of transition metal selenidostannates. Transit Met Chem 42, 387–393 (2017). https://doi.org/10.1007/s11243-017-0141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0141-0

Keywords

Navigation