Transition Metal Chemistry

, Volume 42, Issue 4, pp 311–322 | Cite as

DNA interactions and anticancer screening of copper(II) complexes of N-(methylpyridin-2-yl)-amidino-O-methylurea

  • Romrawee Pratumwieng
  • Atittaya Meenongwa
  • Rosa F. Brissos
  • Patrick Gamez
  • Yanee Trongpanich
  • Unchulee ChaveerachEmail author


Cu(II) complexes of the tridentate ligand N-(methylpyridin-2-yl)-amidino-O-methylurea (L), namely [Cu(L)Cl2] and [Cu(L)ClO4]ClO4, have been investigated for interactions with DNA by spectroscopic methods and viscosity measurements. Both complexes bind to DNA through non-intercalative interactions. [Cu(L)Cl2] (K b = 2.81 × 105 M−1) shows similar DNA-binding potential to [Cu(L)ClO4]ClO4 (K b = 1.57 × 105 M−1). Investigation of the chemical nuclease properties toward plasmid pBR322 DNA by gel electrophoresis and atomic force microscopy (AFM) suggests that both complexes are able to cleave the supercoiled form (Form I) to the nicked (Form II) and linear forms (Form III) through an oxidative pathway. The possible reactive oxygen species have been investigated by the use of scavengers, indicating that hydroxyl radicals may be involved in the DNA cleavage mechanism. Both of these complexes show similar activities against selected human cancer cell lines.


Circular Dichroism Spectrum Ethidium Bromide Nuclease Activity Absorption Titration Intrinsic Binding Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Communication, through the Advanced Functional Materials Cluster of Khon Kaen University. P.G. acknowledges ICREA (Institució Catalana de Recerca i Estudis Avançats), the Ministerio de Economía y Competitividad of Spain (Project CTQ2011-27929-C02-01), and the support of COST Actions CM1003 and CM1105.

Supplementary material

11243_2017_134_MOESM1_ESM.docx (363 kb)
Supplementary material 1 (DOCX 362 kb)


  1. 1.
    Shahabadi N, Kashanian S, Darabi F (2010) DNA binding and DNA cleavage studies of a water soluble cobalt(II) complex containing dinitrogen Schiff base ligand: the effect of metal on the mode of binding. Eur J Med Chem 45:4239–4245CrossRefGoogle Scholar
  2. 2.
    Parveen S, Arjmand F, Ahmad I (2014) Enantiomeric in vitro DNA binding, pBR322 DNA cleavage and molecular docking studies of chiral L- and D-ternary copper(II) complexes of histidine and picolinic acid. J Photochem Photobiol, B 130:170–178CrossRefGoogle Scholar
  3. 3.
    Pradeepa SM, Naik HSB, Kumar BV, Priyadarsini KI, Barik A, Jayakumar S (2015) Synthesis and characterization of cobalt(II), nickel(II) and copper(II)-based potential photosensitizers: evaluation of their DNA binding profile, cleavage and photocytotoxicity. Inorg Chim Acta 428:138–146CrossRefGoogle Scholar
  4. 4.
    Arjmand F, Jamsheera A, Mohapatra DK (2013) Synthesis, characterization and in vitro DNA binding and cleavage studies of Cu(II)/Zn(II) dipeptide complexes. J Photochem Photobiol, B 121:75–85CrossRefGoogle Scholar
  5. 5.
    Sangeetha S, Murali M (2015) Water soluble copper(II) complex [Cu(dipica)(CH3COO)]ClO4: dNA binding, pH dependent DNA cleavage and cytotoxicity. Inorg Chem Commun 59:46–49CrossRefGoogle Scholar
  6. 6.
    Kumar RS, Sasikala K, Arunachalam S (2008) DNA interaction of some polymer–copper(II) complexes containing 2,2′-bipyridyl ligand and their antimicrobial activities. J Inorg Biochem 102:234–241CrossRefGoogle Scholar
  7. 7.
    Chaveerach U, Meenongwa A, Trongpanich Y, Soikum C, Chaveerach P (2010) DNA binding and cleavage behaviors of copper(II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities. Polyhedron 29:731–738CrossRefGoogle Scholar
  8. 8.
    Meenongwa A, Brissos RF, Soukum C, Chaveerach P, Gamez P, Trongpanich Y, Chaveerach U (2015) DNA-interacting and biological properties of copper(II) complexes from amidino-O-methylurea. New J Chem 39:664–675CrossRefGoogle Scholar
  9. 9.
    Qiu L, Lv G, Guo L, Chen L, Luo S, Zou M, Lin J (2015) Synthesis, crystal structure and antitumor effect of a novel copper(II) complex bearing zoledronic acid derivative. Eur J Med Chem 89:42–50CrossRefGoogle Scholar
  10. 10.
    Meenongwa A, Chaveerach U, Blake AJ (2012) Methanol[1-(methoxy methanimidoyl)-2-(pyridin-2-ylmethyl)guanidine]bis(perchlorato)copper(II). Acta Crystallogr Sect C 68:m143–m146CrossRefGoogle Scholar
  11. 11.
    Hubberstey P, Suksangpanya U (2004) Hydrogen-bonded supramolecular chain and sheet formation by coordinated guanidine derivatives. Struct Bond 111:33–83CrossRefGoogle Scholar
  12. 12.
    Sączewski F, Balewski Ł (2013) Biological activities of guanidine compounds, 2008–2012 update. Expert Opin Ther Pat 23:965–995CrossRefGoogle Scholar
  13. 13.
    Roa AVR, Gurjar MK, Islam A (1993) Synthesis of a new bicyclic guanidine heterocycle as a potential anti HIV agent. Tetrahedron Lett 34:4993–4996CrossRefGoogle Scholar
  14. 14.
    Pratumwieng R, Soikum C, Chaveerach P, Chaveerach U (2014) Binding studies of (N-(methylpyridin-2-yl)-amidino-O-methylurea)copper(II) complexes to four nitrogenous bases and 5′-GMP. Inorg Chim Acta 423:421–429CrossRefGoogle Scholar
  15. 15.
    Suksangpanya U, Blake AJ, Cade EL, Hubberstey P, Parker DJ, Wilson C (2004) Hydrogen-bonded supramolecular architectures in (N-(methylpyridin-2-yl)-amidino-O-alkylurea)copper(II) halides. CrystEngComm 6:159–167CrossRefGoogle Scholar
  16. 16.
    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  17. 17.
    Reichman ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053CrossRefGoogle Scholar
  18. 18.
    Wolf A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396CrossRefGoogle Scholar
  19. 19.
    Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecule. Biochemistry 12:4161–4170CrossRefGoogle Scholar
  20. 20.
    Facchin G, Kremer E, Barrio DA, Etcheverry SB, Costa-Filho AJ, Torre MH (2009) Interaction of Cu-dipeptide complexes with Calf Thymus DNA and antiproliferative activity of [Cu(ala-phe)] in osteosarcoma-derived cells. Polyhedron 28:2329–2334CrossRefGoogle Scholar
  21. 21.
    Brien JO, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar blue (resazurin) floresecence dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426CrossRefGoogle Scholar
  22. 22.
    O′Neill MJ MJ, Bray DH, Boardmann P, Phillipson JD, Warhurst DC (1985) Plants as sources of antimalarial drugs part 1. In vitro test method for the evaluation of crude extracts from plants. Planta Med 51:394–398CrossRefGoogle Scholar
  23. 23.
    Barton JK, Danishefsky A, Goldberg J (1984) Tris(phenanthroline) ruthenium(II): stereoselectivity in binding to DNA. J Am Chem Soc 106:2172–2176CrossRefGoogle Scholar
  24. 24.
    Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23:271–273CrossRefGoogle Scholar
  25. 25.
    LePecq JB, Paoletti C (1967) A fluorescence complex between ethidium bromide and nucleic acids, Physical-chemical characterization. J Mol Biol 27:87–106CrossRefGoogle Scholar
  26. 26.
    Qiao X, Ma ZY, Shao J, Bao WG, Xu JY, Qiang ZY, Lou JS (2014) Biological evaluation of a cytotoxic 2-substituted benzimidazole copper(II) complex: DNA damage, antiproliferation and apoptotic induction activity in human cervical cancer cells. Biometals 27:155–172CrossRefGoogle Scholar
  27. 27.
    Chen Z, Wang X, Li Y, Guo Z (2008) Comparison of DNA binding and cleavage abilities between mono- and trinuclear copper(II) complexes of benzimidazole derivatives. Inorg Chem Commun 11:1392–1396CrossRefGoogle Scholar
  28. 28.
    Dey S, Sarkar S, Paul H, Zangrando E, Chattopadhyay P (2010) Copper(II) complex with tridentate N donor ligand: synthesis, crystal structure, reactivity and DNA binding study. Polyhedron 29:1583–1587CrossRefGoogle Scholar
  29. 29.
    Ghosh K, Kuma P, Tyagi N, Singh UP, Goel N (2011) Synthesis, structural characterization and DNA interaction studies on a mononuclear copper complex: nuclease activity via self-activation. Inorg Chem Commun 14:489–492CrossRefGoogle Scholar
  30. 30.
    Ghosh K, Kumar P, Tyagi N, Singh UP, Goel N, Chakraborty A, Roy P, Baratto MC (2011) DNA interaction, superoxide scavenging and cytotoxicity studies on new copper(II) complexes derived from a tridentate ligand. Polyhedron 30:2667–2677CrossRefGoogle Scholar
  31. 31.
    Baguley BC, Bret ML (1984) Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry 23:937–943CrossRefGoogle Scholar
  32. 32.
    Scaria PV, Shafer RH (1991) Binding of ethidium bromide to a DNA triple helix. J Biol Chem 266:5417–5423Google Scholar
  33. 33.
    Kelly JM, Tossi AB, McConnell DJ, Ohuigin C (1985) A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Res 14:6017–6034CrossRefGoogle Scholar
  34. 34.
    Johnson WC (1994) In: Nakanishi K, Berova N, Woody RW (eds) Circular dichroism: Principle and application. VCH, New YorkGoogle Scholar
  35. 35.
    Lincoln P, Tuite E, Nordén B (1997) Short-circuiting the molecular wire: cooperative binding of Δ-[Ru(phen)2d ppz]2 + and Δ-[Ru(phi)2bipy]3 + to DNA. J Am Chem Soc 119:1454–1455CrossRefGoogle Scholar
  36. 36.
    Mahadevan S, Palaniandavar M (1997) Spectroscopic and voltammetric studies of copper(II) complexes of bis(pyrid-2-yl)-di/trithia ligands bound to calf thymus DNA. Inorg Chim Acta 254:291–302CrossRefGoogle Scholar
  37. 37.
    Mahadevan S, Palaniandavar M (1998) Spectroscopic and voltammetric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrorines bound to calf thymus DNA. Inorg Chem 37:693–700CrossRefGoogle Scholar
  38. 38.
    Neyhart GA, Grover N, Smith SR, Kalsbeck WA, Fairley TA, Cory M, Thorp HH (1993) Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV). J Am Chem Soc 115:4423–4428CrossRefGoogle Scholar
  39. 39.
    Kumar CV, Punzalan EHA, Tan WB (2000) Adenine-thymine base pair recognition by an anthryl probe from the DNA minor groove. Tetrahedron 56:7027–7040CrossRefGoogle Scholar
  40. 40.
    Schilter D, Urathamakul T, Beck JL, Harding MM, Rendina LM (2010) ESI-MS and thermal melting studies of nanoscale platinum(II) metallomacrocycles with DNA. Dalton Trans 39:11263–11271CrossRefGoogle Scholar
  41. 41.
    Eichhorn GL, Shin YA (1968) Interaction of metal ions with polynucleotides and related compounds. XII. The relative effect of various metal ions on DNA helicity. J Am Chem Soc 90:7323–7328CrossRefGoogle Scholar
  42. 42.
    Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine. Oxford Science Publication, OxfordGoogle Scholar
  43. 43.
    Sigman DS, Chen CHB (1986) Nuclease activity of 1,10-phenanthroline-copper ion. Acc Chem Res 19:180–186CrossRefGoogle Scholar
  44. 44.
    Yamazaki I, Piette LH (1961) Mechanism of free radical formation and disappearance during the ascorbic oxidase and peroxidase. Biochem Biophys Acta 59:62–69CrossRefGoogle Scholar
  45. 45.
    Barve A, Kumbhar A, Bhat M, Joshi B, Butcher R, Sonawane U, Joshi R (2009) Mixed-ligand copper(II) maltolate complexes: synthesis, characterization, DNA binding and cleavage, and cytotoxicity. Inorg Chem 48:9120–9132CrossRefGoogle Scholar
  46. 46.
    Ren R, Yang P, Han GY (1999) DNA cleavage by copper(II) complexes without added coreactants. Chin Chem Lett 10:383–386Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Romrawee Pratumwieng
    • 1
  • Atittaya Meenongwa
    • 2
  • Rosa F. Brissos
    • 3
  • Patrick Gamez
    • 3
    • 4
  • Yanee Trongpanich
    • 5
  • Unchulee Chaveerach
    • 1
    Email author
  1. 1.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research CenterKhon Kaen UniversityKhon KaenThailand
  2. 2.Chemistry Division, Department of Science, Faculty of Science and TechnologyRajamangala University of Technology KrungthepBangkokThailand
  3. 3.Departament de Química InorganicaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Institució Catalana de Recerca I Estudis Avanҫats (ICREA)BarcelonaSpain
  5. 5.Department of Biochemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations