Skip to main content
Log in

Synthesis, characterization, and antimicrobial activities of palladium Schiff base complexes derived from aminosalicylic acids

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Six Schiff base compounds have been prepared from the condensation of o-vanillin, 2,3-dihydroxybenzaldehyde and 2,3,4-trihydroxybenzaldehyde with 4-aminosalicylic acid and 5-aminosalicylic acid (5-ASA). Addition of these Schiff bases to [Pd(OAc)2] afforded the corresponding bis(salicylaldiminato)palladium(II) complexes in moderate to excellent yields. All new palladium complexes have been characterized fully using standard spectroscopic methods, elemental analyses and a single-crystal X-ray diffraction study in the case of 2e, the palladium complex containing Schiff base ligands derived from 5-ASA and 2,3-dihydroxybenzaldehyde. All derivatives of 5-ASA were examined for potential antimicrobial activities against two species of fungi, Aspergillus niger and Saccharomyces cerevisiae, as well as two species of bacteria, Bacillus cereus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barry NPE, Sadler PJ (2013) ACS Nano 7:5654

    Article  CAS  Google Scholar 

  2. de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Clin Cancer Res 20:5384

    Article  Google Scholar 

  3. Orvig C, Abrams MJ (1999) Chem Rev 99:2201

    Article  CAS  Google Scholar 

  4. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307

    Article  CAS  Google Scholar 

  5. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Coord Chem Rev 284:329

    Article  CAS  Google Scholar 

  6. Zhang H, Enman JE, Conrad ML, Manning MJ, Turner CS, Wheaton SL, Vogels CM, Westcott SA, Decken A, Baerlocher FJ (2006) Transit Met Chem 31:13

    Article  Google Scholar 

  7. Ferreira IP, de Lima GM, Paniago EB, Takahashi JA, Pinheiro CB (2014) Inorg Chim Acta 423:443

    Article  CAS  Google Scholar 

  8. Ali OAM (2014) Spectrochim Acta A 132:52

    Article  CAS  Google Scholar 

  9. Ali OAM (2014) Spectrochim Acta A 121:188

    Article  CAS  Google Scholar 

  10. Prasad KS, Kumar LS, Chandan S, Kumar RMN, Revanasiddappa HD (2013) Spectrochim Acta A 107:108

    Article  CAS  Google Scholar 

  11. Bandyopadhyay N, Zhu M, Lu L, Mitra D, Das M, Das P, Samanta A, Naskar JP (2015) Eur J Med Chem 89:59

    Article  CAS  Google Scholar 

  12. Juribašić M, Molćanov K, Kojić-Prodić B, Bellotto L, Kralj M, Zani F, Tušek-Božić L (2011) J Inorg Biochem 105:867

    Article  Google Scholar 

  13. Casas JS, Castiñeiras A, García-Martínez E, Parajó Y, Pérez-Parallé ML, Sánchez-González A, Sordo J (2005) Z Anorg Allg Chem 631:2258

    Article  CAS  Google Scholar 

  14. Motswainyana WM, Onani MO, Madiehe AM, Saibu M (2014) Bioorg Med Chem Lett 24:1692

    Article  CAS  Google Scholar 

  15. Motswainyana WM, Onani MO, Madiehe AM, Saibu M, Jacobs J, van Meervelt L (2013) Inorg Chim Acta 400:197

    Article  CAS  Google Scholar 

  16. García-Friaza G, Fernádez-Botello A, Pérez JM, Prieto MJ, Moreno V (2006) J Inorg Biochem 100:1368

    Article  Google Scholar 

  17. Carvalho MA, Arruda EGR, Profirio DM, Gomes AF, Gozzo FC, Formiga ALB, Corbi PP (2015) J Mol Struct 1100:6

    Article  CAS  Google Scholar 

  18. Kazemi Z, Rudbari HA, Sahihi M, Mirkhani V, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I, Gharaghani S (2016) J Photochem Photobiol, B 162:448

    Article  CAS  Google Scholar 

  19. Garoufis A, Hadjikakou SK, Hadjiliadis N (2009) Coord Chem Rev 253:1384

    Article  CAS  Google Scholar 

  20. Farkasová V, Drweesh SA, Lüköová A, Sabolavá D, Radojević ID, Čomić LR, Vasić SM, Paulíková H, Fečko S, Balaškova T, Vilková M, Imrich J, Potočňák I (2017) J Inorg Biochem 167:80

    Article  Google Scholar 

  21. Mansour AM (2016) Inorg Chim Acta 453:697

    Article  CAS  Google Scholar 

  22. Onwudiwe DC, Ekennia AC, Mogwase BMS, Olubiyi OO, Hosten E (2016) Inorg Chim Acta 450:69

    Article  CAS  Google Scholar 

  23. Satheesh CE, Kumar PR, Sharma P, Lingaraju K, Palakshamurthy BS, Naika HR (2016) Inorg Chim Acta 442:1

    Article  CAS  Google Scholar 

  24. Moosun SB, Bhowon MG, Hosten EC, Jhaumeer-Laulloo S (2016) J Coord Chem 69:2736

    Article  CAS  Google Scholar 

  25. Al-Khodir FAI, Refat MS (2016) Russ J Gen Chem 86:708

    Article  CAS  Google Scholar 

  26. Bourque TA, Nelles ME, Gullon TJ, Garon CN, Ringer MK, Leger LJ, Wheaton SL, Baerlocher FJ, Vogels CM, Decken A, Westcott SA (2005) Can J Chem 83:1063

    Article  CAS  Google Scholar 

  27. Abdu-Allah HH, El-Shorbagi ANA, Abdel-Moty SG, El-Awady R, Abdel-Alim AAM (2016) Med Chem 6:306

    Article  Google Scholar 

  28. Mitchison DA (2000) Int J Tuberc Lung Dis 4:796

    CAS  Google Scholar 

  29. Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Dick T, Walker JR, Pethe K, Camacho LR (2013) J Biol Chem 288:23447

    Article  CAS  Google Scholar 

  30. Patole J, Shingnapurkar D, Padhye S, Ratledge C (2006) Bioorg Med Chem Lett 16:1514

    Article  CAS  Google Scholar 

  31. Cinčić D, Brekalo I, Kaitner B (2012) Chem Commun 48:11683

    Article  Google Scholar 

  32. Bruker (2008) APEX2 version 2008.5. Bruker AXS, Inc., Madison

    Google Scholar 

  33. Sheldrick GM (2008) Acta Cryst A 64:112

    Article  CAS  Google Scholar 

  34. Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281

    Article  Google Scholar 

  35. Farrugia LJ (1997) J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  36. Joshi KR, Rojivadiya AJ, Pandya JH (2014) Int J Inorg Chem. Article ID 817412. doi:10.1155/2014/817412

Download references

Acknowledgements

Thanks are gratefully extended to Mount Allison University, Saint Mary’s University, and the Canada Research Chair Program (S.A.W.) for financial support. We also thank Cuthumb Durant (Mount Allison University) for his expert technical assistance and anonymous reviewers thanked for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Westcott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaus, J.A., Brooks, T.M., Zhou, M. et al. Synthesis, characterization, and antimicrobial activities of palladium Schiff base complexes derived from aminosalicylic acids. Transit Met Chem 42, 263–271 (2017). https://doi.org/10.1007/s11243-017-0130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0130-3

Keywords

Navigation