Skip to main content
Log in

Ring-opening polymerization of ε-caprolactone catalysed by (pyridyl)benzoazole Zn(II) and Cu(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the synthesis of (pyridyl)benzoazole Zn(II) and Cu(II) complexes and their applications as catalysts in ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). Reactions of 2-(3-pyridyl)-1H-benzimidazole (L1), 2-(2-pyridyl)-1H-benzothiazole (L2) and 2-(2-pyridyl)-1H-benzimidazole (L3) with Zn(II) and Cu(II) acetates produced the corresponding complexes; [Zn2(L1)2(OAc)4)] (1), [Cu2(L1)2(OAc)4] (2), [Zn(L2)(OAc)2)] (3), [Zn(L3)(OAc)2)] (4) and [Cu(L3), (OAc)2)] (5). Molecular structures of complexes 2 and 5a revealed that while L1 adopts a monodentate binding mode, through the pyridyl nitrogen atom, L3 exhibits a bidentate coordination mode. All the complexes formed active catalysts in the ROP of ε-CL to afford moderate molecular weight polymers. The kinetics of the ROP reactions of ε-CL were pseudo-first-order with respect to monomer and catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Okada M (2002) Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  2. Flieger M, Kantorova M, Prell A, Řezanka T, Votruba T (2003) Folia Microbiol 48:27

    Article  CAS  Google Scholar 

  3. Wang Y, Zhao W, Liu D, Li S, Liu X, Cui D, Chen X (2012) Organometallics 31:4182

    Article  CAS  Google Scholar 

  4. Wu JC, Yu TL, Chen CT, Lin CC (2006) Coord Chem Rev 250:602

    Article  CAS  Google Scholar 

  5. Lindblad MS, Liu Y, Albertsson A-C, Ranucci E, Karlsson S (2002) Adv Polym Sci 157:139

    Article  CAS  Google Scholar 

  6. Koeller S, Kadota J, Deffieux A, Peruch F, Massip S, Léger J-M, Desvergne J-P, Bibal B (2009) J Am Chem Soc 131:15088

    Article  CAS  Google Scholar 

  7. Jensen TR, Schaller CP, Hillmyer MA, Tolman WB (2005) J Organomet Chem 690:5881

    Article  CAS  Google Scholar 

  8. Zhong Z, Ankoné MJ, Dijkstra PJ, Birg C, Westerhausen M, Feijen J (2001) Polym Bull 46:51

    Article  Google Scholar 

  9. Chuang HJ, Chen HL, Huang BH, Tsai TE, Huang PL, Liao TT, Lin CC (2013) J Polym Sci, Part A: Polym Chem 51:1185

    Article  CAS  Google Scholar 

  10. Thomas CM (2010) Chem Soc Rev 39:165

    Article  CAS  Google Scholar 

  11. Zoltowaska K, Sobczak M, Oledzka E (2015) Molecules 20:2816

    Article  Google Scholar 

  12. Drouin F, Oguadinma PO, Whitehorne TJ, Prud’homme RE, Schaper F (2010) Organometallics 29:2139

    Article  CAS  Google Scholar 

  13. Routary A, Nath N, Mantri S, Maharana T, Sutar AK (2015) Chin J Catal 36:764

    Article  Google Scholar 

  14. Appavoo D, Omondi B, Guzei IA, Van Wyk JL, Zinyemba O, Darkwa J (2014) Polyhedron 69:55

    Article  CAS  Google Scholar 

  15. Whitehorne TJ, Vabre B, Schaper F (2014) Dalton Trans 43:6339

    Article  CAS  Google Scholar 

  16. Ojwach SO, Zaca TP (2015) S Afr J Chem 68:7

    Article  CAS  Google Scholar 

  17. Attandoh NW, Ojwach SO, Munro OQ (2014) Eur J Inorg Chem, 3053

  18. Ojwach SO, Okemwa TT, Attandoh NW, Omondi B (2013) Dalton Trans 42:10735

    Article  CAS  Google Scholar 

  19. Beloglazkina E, Yudin I, Majouga A, Moiseeva A, Tursina A, Zyk A (2006) Russ Chem Bull 55:1803

    Article  CAS  Google Scholar 

  20. Hein D, Alheim RJ, Leavitt J (1957) J Am Chem Soc 79:427

    Article  CAS  Google Scholar 

  21. Bruker Group (2012) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison

    Google Scholar 

  22. Sheldrick GM (2015) Acta Cryst 71:3–8

    Google Scholar 

  23. Farrugia LJ (2012) J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  24. Spek AL (2009) Acta Cryst D65:148–155

    Google Scholar 

  25. Motswainyana WM, Onani MO, Ojwach SO, Omondi B (2012) Inorg Chim Acta 391:93

    Article  CAS  Google Scholar 

  26. Housecroft CE, Sharpe AG (2008) Inorganic Chemistry, 3rd edn. Pearson Education Ltd, Hallow, p 670

    Google Scholar 

  27. Li XP, Pan M, Zheng SR, Liu YR, He QT, Kang BS, Su CY (2007) Cryst Growth Des 7:2481

    Article  CAS  Google Scholar 

  28. Jones CJ (2002) Tutorial Chemistry Texts, d and f block Chemistry, vol 4. Royal Society of Chemistry, Cambridge, p 73

    Google Scholar 

  29. Iqbal M, Ahmad I, Ali S, Muhammad N, Ahmed S, Sohail M (2013) Polyhedron 50:524

    Article  CAS  Google Scholar 

  30. Casanova J, Alzuet G, Latorre J, Borrás J (1997) Inorg Chem 36:2052

    Article  CAS  Google Scholar 

  31. Barret J (2003) Tutorial Chemistry Texts, Inorganic Chemistry In Aqueous Solution, vol 21. Royal Society of Chemistry, Cambridge, p 154

    Google Scholar 

  32. Sung CY, Li C-Y, Sun J-K, Chen TY, Lin C-H, Ko BT (2012) Dalton Trans 41:953

    Article  CAS  Google Scholar 

  33. Romain C, Rosa V, Fliedel C, Bier F, Hild H, Welter R, Dagorne S, Avilés T (2012) Dalton Trans 41:3377

    Article  CAS  Google Scholar 

  34. Vion JM, Jerome R, Teyssie P, Aubin M, Prudhomme RE (1986) Macromolecules 19:1828

    Article  CAS  Google Scholar 

  35. Pilone Lamberti AM, Mazzeo M, Milione S, Pellecchia C (2013) Dalton Trans 42:13036

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of KwaZulu-Natal for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Ojwach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2016_66_MOESM1_ESM.docx

Supplementary Figures S1–S3 represent 1H NMR, ESI–MS spectra and crystal packing of complexes 4, 5 and 2, respectively. Figures S4 represents plots of ln[CL]0/[CL] t versus time versus time for catalysts 15, while Figure S5 depicts a plot of ln[CL]0/[CL] t versus time at different catalyst concentrations using 1. Typical GPC chromatogram of PCL sample is given in Figure S6, while ESI mass and 1H NMR spectra of the polymers are given in Figures S7 and S8. CCDC numbers 1404899 and 1404900 contain the supplementary crystallographic data for compounds 2 and 5a, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. (DOCX 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaca, T.P., Ojwach, S.O. & Akerman, M.P. Ring-opening polymerization of ε-caprolactone catalysed by (pyridyl)benzoazole Zn(II) and Cu(II) complexes. Transit Met Chem 41, 663–673 (2016). https://doi.org/10.1007/s11243-016-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0066-z

Keywords

Navigation