Skip to main content
Log in

Aqueous biphasic hydroformylation of higher alkenes and highly efficient catalyst recycling in the presence of a polar low boiling solvent

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The hydroformylation of higher alkenes under aqueous biphasic reaction conditions with a rhodium catalyst derived from BISBIS (sodium salt of sulfonated 2,2′-bis (diphenylphosphinomethyl)-1,1′-biphenyl) in the presence of a polar low boiling point solvent was studied. The addition of ethanol greatly accelerated hydroformylation, such that the turnover frequency (defined as the moles of converted alkene per mole of Rh per hour) and the selectivity for linear aldehyde were up to 2095 h−1 and 99 %, respectively. The catalytic system could be recycled for at least five runs without significant loss of activity in the aqueous biphasic hydroformylation of 1-octene; the rhodium content leaching in product mixtures detected by inductively coupled plasma atomic emission spectroscopy was < 0.1 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kuntz EG (1975) FR 2.314:910

  2. Kuntz EG (1987) ChemTech 17:570

    CAS  Google Scholar 

  3. Cornils B, Wiebus E (1995) ChemTech 33:25

    Google Scholar 

  4. Cornils B, Kuntz EG (1995) J Organomet Chem 502:177–186

    Article  CAS  Google Scholar 

  5. Cornils B, Herrmann WA, Eckl RW (1997) J Mol Catal A 116:27–31

    Article  CAS  Google Scholar 

  6. Cornils B (1999) J Mol Catal 143:1–10

    Article  CAS  Google Scholar 

  7. Siangwata S, Baartzes N, Makhubela BCE, Smith GS (2015) J Organomet Chem 796:26–32

    Article  CAS  Google Scholar 

  8. Yuan ML, Chen H, Li RX, Li YZ, Li XJ (2004) Catal Lett 94:15–16

    Article  CAS  Google Scholar 

  9. Sandee AJ, Slagt VF, Reek JNH, Kamer PCJ, van Leeuwen PWNM (1999) J Chem Soc, Chem Commun 16:33

    Google Scholar 

  10. Goedheijt MS, Hanson BE, Reet JNH, Kamer PCJ, van Leeuwen PWNM (2000) J Am Chem Soc 122:1650–1657

    Article  CAS  Google Scholar 

  11. Herrmann WA, Kohlpaintner CW, Manetsberger RB, Bahrmann H, Kottmann H (1995) J Mol Catal A 97:65–72

    Article  CAS  Google Scholar 

  12. Yuan ML, Chen H, Li RX, Li YZ, Li XJ (2003) Appl Catal A Gen 251:181–185

    Article  CAS  Google Scholar 

  13. Kranenburg M, van der Burgt YEM, Kamer PCT, van Leeuwen PWNM (1995) Organometallics 14:3081–3089

    Article  CAS  Google Scholar 

  14. Casey CP, Paulsen EL, Beuttenmueller EW, Proft BR, Matter BA, Powell DR (1999) J Am Chem Soc 121:63–70

    Article  CAS  Google Scholar 

  15. Bahrmann H, Bach H, Frohning CD, Kleiner HJ, Lappe P, Peters D, Regnat D, Herrmann WA (1997) J Mol Catal A 116:49–53

    Article  CAS  Google Scholar 

  16. Breit B, Seiche W (2001) Synthesis 1:1

    Article  Google Scholar 

  17. Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA, Powell DR (1992) J Am Chem Soc 114:5535–5543

    Article  CAS  Google Scholar 

  18. Casey CP, Petrovich LM (1995) J Am Chem Soc 117:6007–6014

    Article  CAS  Google Scholar 

  19. van der Veen LA, Boele MDK, Bregman FR, Kamer PCJ, van Leeuwen PWNM, Goubitz K, Fraanje J, Schenk H, Bo C (1998) J Am Chem Soc 120:11616–11626

    Article  Google Scholar 

  20. van der Veen LA, Keeven PH, Schoemaker GC, Reek JNH, Kamer PCJ, van Leeuwen PWNM, Lut M, Spek AL (2000) Organometallics 19:872–883

    Article  Google Scholar 

  21. Casey CP, Paulsen EL, Beuttenmueller EW, Proft BR, Petrovich LM, Matter BA, Powell DR (1997) J Am Chem Soc 119:11817–11825

    Article  CAS  Google Scholar 

  22. Herrmann WA, Kohlpaintner CW, Bahrmann H, Knokol W (1992) J Mol Catal 73:191–201

    Article  CAS  Google Scholar 

  23. Geodheijt MS, Kamer PCT, van Leeuwen PWNM (1998) J Mol Catal A 134:243–249

    Article  Google Scholar 

  24. Hanson BE, Ding H, Kohlpaintner CW (1998) Catal Today 42:421–429

    Article  CAS  Google Scholar 

  25. Chen H, Li Y, Chen J, Cheng P, He Y, Li X (1999) J Mol Catal A: Chem 149:1–6

    Article  CAS  Google Scholar 

  26. Chen H, Li Y, Chen J, Cheng P, Li X (2002) Catal Today 74:131–135

    Article  CAS  Google Scholar 

  27. Chen H, Liu HC, Li YZ (1994) Fenzi Catal. (chin) 8:124–130

    CAS  Google Scholar 

  28. Baricelli PJ, Melean LG, Alonsoa MMMM (2015) Catal Today 247:124–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (201202108) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Lin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, JZ., Lang, JW., Fu, HY. et al. Aqueous biphasic hydroformylation of higher alkenes and highly efficient catalyst recycling in the presence of a polar low boiling solvent. Transit Met Chem 41, 599–603 (2016). https://doi.org/10.1007/s11243-016-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0058-z

Keywords

Navigation