Skip to main content
Log in

X-ray crystal structures of [NHR3]2[Fe4S4X4] (X = PhS, R = Et or nBu; X = Cl, R = nBu): implications for sites of protonation in Fe–S clusters

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The X-ray crystal structures of [NHR3]2[Fe4S4X4] (X = PhS, R = Et or nBu; X = Cl, R = nBu), reported in this paper, show NH…X interactions between the cation and the cubanoid cluster. Comparison of the cluster dimensions in [NHR3]2[Fe4S4X4] with those reported earlier for [NR′4]2[Fe4S4X4] (R′ = Me, X = PhS; R′ = Et, X = Cl) indicates that N–H…X interactions have a negligible effect on the dimensions of the cluster. The relevance of these structures to understanding where on [Fe4S4X4]2− protonation labilises the cluster to substitution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burgess B, Lowe DJ (1996) Chem Rev 96:2983

    Article  CAS  Google Scholar 

  2. Spatzal T, Akoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940

    Article  CAS  Google Scholar 

  3. Hoffman BM, Dean DR, Seefeldt LC (2009) Acc Chem Res 42:609

    Article  CAS  Google Scholar 

  4. Lukoyanov D, Yang Z-Y, Khadka N, Dean DR, Seefeldt LC, Hoffman BM (2015) J Am Chem Soc 137:3610

    Article  CAS  Google Scholar 

  5. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239

    Article  CAS  Google Scholar 

  6. Beinert H, Kennedy MC, Stout CD (1996) Chem Rev 96:2335

    Article  CAS  Google Scholar 

  7. Lee SC, Holm RH (2004) Chem Rev 104:1135

    Article  CAS  Google Scholar 

  8. Dukes GR, Holm RH (1975) J Am Chem Soc 97:528

    Article  CAS  Google Scholar 

  9. Henderson RA (2005) Chem Rev 105:2365

    Article  CAS  Google Scholar 

  10. Henderson RA (2005) Coord Chem Rev 249:1841

    Article  CAS  Google Scholar 

  11. Henderson RA (2012) Bioinorg React Mech 8:1

    Article  CAS  Google Scholar 

  12. Alwaaly A, Dance I, Henderson RA (2014) Chem Commun 50:4799

    Article  CAS  Google Scholar 

  13. Dance I, Henderson RA (2014) Dalton Trans 43:16213

    Article  CAS  Google Scholar 

  14. Dance I (2015) Dalton Trans 44:4707

    Article  CAS  Google Scholar 

  15. Al-Rammahi TMM, Henderson RA (2016) Dalton Trans 45:307

    Article  CAS  Google Scholar 

  16. Al-Rammahi TMM, Henderson RA (2016) Dalton Trans 45:1373

    Article  CAS  Google Scholar 

  17. Henderson RA, Oglieve KE (1999) J Chem Soc Dalton Trans 3927

  18. Dunford AJ, Henderson RA (2002) J Chem Soc Dalton Trans 2837

  19. Bell J, Dunford AJ, Hollis E, Henderson RA (2003) Angew Chem Int Ed 42:1149

    Article  CAS  Google Scholar 

  20. Bates K, Henderson RA (2008) Inorg Chem 47:5850

    Article  CAS  Google Scholar 

  21. Garrett B, Henderson RA (2010) Dalton Trans 39:4586

    Article  CAS  Google Scholar 

  22. Christou G, Garner CD, Balasubramaniam A, Ridge B, Rydon HN (1982) Inorg Synth 21:33

    CAS  Google Scholar 

  23. Hagen KS, Reynolds JG, Holm RH (1981) J Am Chem Soc 103:4054

    Article  CAS  Google Scholar 

  24. Que L Jr, Bobrik MA, Ibers JA, Holm RH (1974) J Am Chem Soc 96:4168

    Article  CAS  Google Scholar 

  25. Bobrik MA, Hodgson KO, Holm RH (1977) Inorg Chem 16:1851

    Article  CAS  Google Scholar 

  26. Scheiner S (1985) Acc Chem Res 18:174

    Article  CAS  Google Scholar 

  27. Izutsu K (1990) Acid-base dissociation constants in aprotic solvents. Blackwell, Oxford

    Google Scholar 

  28. Stephens PJ, Jollie JR, Werschel A (1996) Chem Rev 96:2491 (and references therein)

    Article  CAS  Google Scholar 

  29. Ueyama N, Yamada Y, Okamura T, Kimura S, Nakamura A (1996) Inorg Chem 35:6473

    Article  CAS  Google Scholar 

  30. Strasdeit H, Krebs B, Henkel G (1984) Inorg Chem 23:1816

    Article  CAS  Google Scholar 

  31. You J-F, Papaefthymiou GC, Holm RH (1992) J Am Chem Soc 114:2697

    Article  CAS  Google Scholar 

  32. You J-F, Snyder BS, Papaefthymiou GC, Holm RH (1990) J Am Chem Soc 112:1067

    Article  CAS  Google Scholar 

  33. Henderson RA (1999) J Chem Soc Dalton Trans 119

  34. Dilworth JR, Henderson RA, Dahlstrom P, Nicholson T, Zubieta JA (1987) J Chem Soc Dalton Trans 529

  35. CrysAlisPro (Version 1.171.35) (2010) Oxford diffraction

  36. Clark RC, Reid JS (1995) Acta Cryst A51:887

    Article  CAS  Google Scholar 

  37. Dolomanov OV, Bouhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  38. Sheldrick GM (2015) Acta Cryst A71:3

    Google Scholar 

  39. Sheldrick GM (2008) Acta Cryst A64:112

    Article  Google Scholar 

Download references

Acknowledgments

T. Al-Rammahi thanks the Higher Committee for Education Development in Iraq and Iraqi Ministry of Higher Education and Scientific Research for a studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Henderson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rammahi, T.M.M., Waddell, P.G. & Henderson, R.A. X-ray crystal structures of [NHR3]2[Fe4S4X4] (X = PhS, R = Et or nBu; X = Cl, R = nBu): implications for sites of protonation in Fe–S clusters. Transit Met Chem 41, 555–561 (2016). https://doi.org/10.1007/s11243-016-0052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0052-5

Keywords

Navigation