Skip to main content
Log in

Neutral and cationic (pyrazolylmethyl)pyridine palladium(II) complexes: kinetics and chemoselectivity studies in hydrogenation of alkenes and alkynes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reactions of (3,5-dimethylpyrazolylmethyl)pyridine (L1) and (3,5-diphenylpyrazolylmethyl)pyridine (L2) with either [PdCl2(NCMe)2] or [PdClMe(COD)] afforded the respective neutral palladium complexes, [PdCl2(L1)] (1), [PdCl2(L2)] (2) and [PdClMe(L1)] (3). Treatment of complex 1 with equimolar amounts of PPh3 or PPh3/NaBAr4 produced the corresponding cationic complexes [Pd(L1)ClPPh3]Cl (4) and [Pd(L1)ClPPh3]BAr4 (5), respectively. Complexes 15 formed active catalysts in hydrogenation of alkenes and alkynes. Isomerization reactions were predominant in the hydrogenation reactions of terminal alkenes, while hydrogenation of alkynes involved a two-step process via alkene intermediates prior to the formation of the respective alkenes. The lack of induction periods in the hydrogenation reactions in addition to pseudo-first-order kinetics with respect to the substrates established the homogeneous nature of the active species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3

Similar content being viewed by others

References

  1. Corvaisier F, Schurman Y, Fecant A, Thomazeau C, Raybaud P, Toulhoat H, Farrusseng D (2013) J Catal 307:352–361

    Article  CAS  Google Scholar 

  2. Vallianatou KA, Frank DJ, Antonopoulou G, Georgakopoulos S, Siapi E, Zervou M, Kostas ID (2013) Tetrahedron Lett 54:397–401

    Article  CAS  Google Scholar 

  3. Wang D-S, Chen Q-A, Lu S-M, Zhou Y-G (2012) Chem Rev 112:2557–2590

    Article  CAS  Google Scholar 

  4. Hoelscher HE, Poynter WG, Weger E (1954) Chem Rev 54:575–592

    Article  CAS  Google Scholar 

  5. Harmon R, Gupta SK, Brown DJ (1973) Chem Rev 73:21–52

    Article  CAS  Google Scholar 

  6. Schmidt O (1933) Chem Rev 12:363–417

    Article  CAS  Google Scholar 

  7. Jackson SD, Shaw LA (1996) Appl Catal A Gen 134:91–99

    Article  CAS  Google Scholar 

  8. Negeshi E (2002) Handbook of organopalladium chemistry for organic synthesis, vol 2. Wiley & Sons, New York, pp 2753–2758

    Book  Google Scholar 

  9. Devries JG, Elsevier CJ (2007) The handbook of homogeneous hydrogenation, vol 1. Wiley, Weinheim

    Google Scholar 

  10. Nerozzi F (2012) Platin Met Rev 56:236–241

    Article  CAS  Google Scholar 

  11. Chen Q-A, Ye Z-S, Duan Y, Zhou Y-G (2013) Chem Soc Rev 42:497–511

    Article  CAS  Google Scholar 

  12. Zhang Y, Liao S, Xu Y, Yu D (2000) Appl Catal A Gen 192:247–251

    Article  CAS  Google Scholar 

  13. Harraz FA, El-Hout SE, Killa HM, Ibrahim IA (2012) J Catal 286:184–192

    Article  CAS  Google Scholar 

  14. Ulan JG, Maier WF (1987) J Org Chem 52:3132–3142

    Article  CAS  Google Scholar 

  15. Liua R-J, Croziera PA, Smith CM, Huculc DA, Blacksond J, Salaita G (2005) Appl Catal A Gen 282:111–121

    Article  Google Scholar 

  16. Aramendia MA, Borau V, Jimenez C, Marinas JM, Porras A, Urbano FJ (1997) J Catal 172:46–54

    Article  CAS  Google Scholar 

  17. Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) J Am Chem Soc A 1711–1732

  18. Hoveyda AH, Evans DA, Fu GC (1993) Chem Rev 93:1307–1370

    Article  CAS  Google Scholar 

  19. van Leeuwen PWNM, Chadwick JC (2005) Homogeneous catalysis, activity-stability-deactivation. Wiley, Weinheim

    Google Scholar 

  20. Drago D, Pregosin PS (2002) Organometallics 21:1208–1215

    Article  CAS  Google Scholar 

  21. Yilmaz F, Mutlu A, Unver H, Kurtca M, Kani I (2010) J Supercrit Fluids 54:202–209

    Article  CAS  Google Scholar 

  22. van Laren MW, Duin MA, Klerk C, Naglia M, Rogolino D, Pelagatti P, Bacchi A, Pelizzi C, Elsevier CJ (2002) Organometallics 21:1546–1553

    Article  Google Scholar 

  23. Chan K-T, Tsai Y-H, Lin W-S, Wu J-R, Chen S-J, Liao F-X, Hu C-H, Lee HM (2010) Organometallics 29:463–472

    Article  CAS  Google Scholar 

  24. Borriello C, Ferrara ML, Orabona I, Panunzi A, Ruffo F (2000) J Chem Soc Dalton Trans 2545–2550

  25. Dayan O, Demirmen S, Özdemir N (2015) Polyhedron 85:926–932

    Article  CAS  Google Scholar 

  26. Dayan S, Arslan F, Ozpozan NK (2015) Appl Catal B Environ 164:305–315

    Article  CAS  Google Scholar 

  27. Gulcemel S, Gokce AG, Cetinkaya B (2013) Dalton Trans 42:7305–7311

    Article  Google Scholar 

  28. van Laren MW, Elsevier CJ (1999) Angew Chem Int Ed 38:3715–3717

    Article  Google Scholar 

  29. Watson AA, House DA, Steel PJ (1987) Inorg Chim Acta 130:167–176

    Article  CAS  Google Scholar 

  30. Ojwach SO, Guzei IA, Darkwa J (2009) J Organomet Chem 694:1393–1399

    Article  CAS  Google Scholar 

  31. Zeng F, Yu Z (2009) Organometallics 28:1855–1862

    Article  CAS  Google Scholar 

  32. Serratrice M, Cinellu MA, Maiore L, Pilo M, Zucca A, Gabbiani C, Guerri A, Landini I, Nobili S, Mini E, Messori L (2012) Inorg Chem 51:3161–3171

    Article  CAS  Google Scholar 

  33. Walling C, Bollyky L (1964) J Am Chem Soc 86:3750–3752

    Article  CAS  Google Scholar 

  34. Rheinlander PJ, Herranz J, Durst J, Gasteiger HA (2014) J Electrochem Soc 161:F1448–F1457

    Article  Google Scholar 

  35. Kim MH, Lee EK, Jun JH, Kong SJ, Han GY, Lee BK, Lee T-J, Yoon KJ (2004) Int J Hydrogen Energy 29:187–193

    Article  CAS  Google Scholar 

  36. Teschner D, Revay Z, Borsodi J, Havecker M, Knop-Gericke A, Schlogl R, Milroys D, Jackson SD, Torres D, Sautet P (2008) Angew Chem Int Ed 47:9274–9278

    Article  CAS  Google Scholar 

  37. Yoshida H, Zama T, Fujita S, Panpranot J, Arai M (2014) RSC Adv 4:24922–24928

    Article  CAS  Google Scholar 

  38. Costa M, Pelagatti P, Pelizzi C, Rogolino D (2002) J Mol Catal A Chem 178:21–26

    Article  CAS  Google Scholar 

  39. Bond GC (1966) Discuss Faraday Soc 41:200–214

    Article  Google Scholar 

  40. Okitsu K, Yue A, Tanabe S, Matsumoto H (2000) Chem Mater 12:3006–3011

    Article  CAS  Google Scholar 

  41. Hallman PS, McGavey BR, Wilkinson G (1968) J Chem Soc A 3143–3150

  42. Bernas A, Kumar N, Mäki-Arvela P, Kul’kova NV, Holmbom B, Salmi T, Murzin DY (2003) Appl Catal A Gen 245:257–275

    Article  CAS  Google Scholar 

  43. Kamiguchi S, Takaku S, Kodomari M, Chihara T (2006) J Mol Catal A Chem 260:43–48

    Article  CAS  Google Scholar 

  44. Carruther W, Coldham I (2004) Modern methods of organic synthesis, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Dobrovolna Z, Kacer P, Cerveny L (1998) J Mol Catal A Chem 130:279–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support received from the University of KwaZulu-Natal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Ojwach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojwach, S.O., Ogweno, A.O. Neutral and cationic (pyrazolylmethyl)pyridine palladium(II) complexes: kinetics and chemoselectivity studies in hydrogenation of alkenes and alkynes. Transit Met Chem 41, 539–546 (2016). https://doi.org/10.1007/s11243-016-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0050-7

Keywords

Navigation