Skip to main content
Log in

Reactions of m-chloroperoxybenzoic acid with dimeric cyclopalladated complexes derived from 2-phenyl-2-oxazolines

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Cyclopalladated complexes (CPCs) (S,S)-di-μ-Cl(κ2-C,N)2Pd2 (1a,b) and (S,S)-di-μ-OAc(κ2-C,N)2Pd2 (7a,b) obtained from (S)-4-t-butyl-(a) and (S)-4-ethyl-2-phenyl-2-oxazoline (b) were reacted with m-chloroperoxybenzoic acid (m-CPBA) at room temperature in methylene chloride, ethyl acetate or acetonitrile followed by workup with lithium chloride. Oxidation products formed in these reactions include dinuclear complexes (S,S)-di-μ-Cl(κ2-N,O)2Pd2 (2a), (S,S)-di-μ-oxo(κ2-N,O)2Pd2Cl2 (2b), and (S,S)-di-μ-(m-Cl-C6H4CO2)(κ2-N,O)2Pd2 (3a,b), mononuclear derivatives (S,S)-bis(κ2-N,O)Pd (4a,b) and dinuclear monooxidation complexes (S,S)-di-μ-Cl(κ2-N,O)(κ2-C,N)Pd2 (5a,b). Each complex was isolated in low yield (6–46 %) with the combined yield of oxidation products reaching up to 64 %. The best selectivity in product distribution was observed for the reactions of μ-OAc–CPCs 7a,b with 2.7 equiv. of m-CPBA in acetonitrile, in which oxygen-insertion adducts 2a and 4b were isolated in 44 and 46 % yields, respectively. The structures of all complexes were supported by spectroscopic methods. An X-ray crystallographic study of compound 4a was performed, confirming its mononuclear structure and revealing an unusual bent geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Vedernikov AN (2012) Acc Chem Res 45:803–813

    Article  CAS  Google Scholar 

  2. Dupont J, Pfeffer M (2008) Palladacycles, synthesis, characterization and applications. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  3. Omae I (2007) J Organomet Chem 692:2608–2632

    Article  CAS  Google Scholar 

  4. Aguilar D, Cuesta L, Nieto S, Serrano E, Urriolabeitia EP (2011) Curr Org Chem 15:3441–3464

    Article  CAS  Google Scholar 

  5. Kalyani D, Sanford MS (2007) Top Organomet Chem 24:85–113

    CAS  Google Scholar 

  6. Korte NJ, Stepanova VA, Smoliakova IP (2013) J Organomet Chem 745–746:356–362

    Article  Google Scholar 

  7. Stepanova VA, Dunina VV, Smoliakova IP (2011) J Organomet Chem 696:871–878

    Article  CAS  Google Scholar 

  8. Stepanova VA, Dunina VV, Smoliakova IP (2009) Organometallics 28:6546–6558

    Article  CAS  Google Scholar 

  9. Bolm C, Wenz K, Raabe G (2002) J Organomet Chem 662:23–33

    Article  CAS  Google Scholar 

  10. Sokolov VI, Troitskaya LL, Reutov OA (1980) J Organomet Chem 202:C58–C60

    Article  CAS  Google Scholar 

  11. Dunina VV, Gorunova ON, Grishin YK, Kuz’mina LG, Churakov AV, Kuchin AV, Howard JAK (2005) Russ Chem Bull 54:2073–2082

    Article  CAS  Google Scholar 

  12. Lagunas M-C, Gossage RA, Spek AL, van Koten G (1998) Organometallics 17:731–741

    Article  CAS  Google Scholar 

  13. Alsters PL, Engel PF, Hogerheide MP, Copijn M, Spek AL, van Koten G (1993) Organometallics 12:1831–1844

    Article  CAS  Google Scholar 

  14. Alsters PL, Boersma J, van Koten G (1993) Organometallics 12:1629–1638

    Article  CAS  Google Scholar 

  15. Nieto S, Arnau P, Serrano E, Navarro R, Soler T, Cativiela C, Urriolabeitia EP (2009) Inorg Chem 48:11963–11975

    Article  CAS  Google Scholar 

  16. Vicente J, Saura-Llamas I, García-López J-A, Calmuschi-Cula B, Bautista D (2007) Organometallics 26:2768–2776

    Article  CAS  Google Scholar 

  17. Vicente J, Saura-Llamas I, Bautista D (2005) Organometallics 24:6001–6004

    Article  CAS  Google Scholar 

  18. Giri R, Chen X, Yu J-Q (2005) Angew Chem Int Ed 44:2112–2115

    Article  CAS  Google Scholar 

  19. Bartolomé C, Espinet P, Martin-Álvarez JM, Villafañe F (2003) Inorg Chim Acta 347:49–52

    Article  Google Scholar 

  20. Justicia J, Oltra JE, Cuerva JM (2005) J Org Chem 70:8265–8272

    Article  CAS  Google Scholar 

  21. Honda T, Janosik T, Honda Y, Han J, Liby KT, Williams CR, Couch RD, Anderson AC, Sporn MB, Gribble GW (2004) J Med Chem 47:4923–4932

    Article  CAS  Google Scholar 

  22. Justicia J, Oltra JE, Cuerva JM (2004) Tetrahedron Lett 45:4293–4296

    Article  CAS  Google Scholar 

  23. Bore L, Honda T, Gribble GW (2000) J Org Chem 65:6278–6282

    Article  CAS  Google Scholar 

  24. Carr K, Saxton HM, Sutherland JK (1988) J Chem Soc Perkin Trans 1:1599–1601

    Article  Google Scholar 

  25. Wang M, Yang Y, Fan Z, Cheng Z, Zhu W, Zhang A (2015) Chem Commun 51:3219–3222

    Article  CAS  Google Scholar 

  26. Oliva-Madrid MJ, Saura-Llamas I, Bautista D, Vicente J (2013) Chem Commun 49:7997–7999

    Article  CAS  Google Scholar 

  27. Abellán-López A, Chicote M-T, Bautista C, Vicente J (2013) Organometallics 32:7612–7624

    Article  Google Scholar 

  28. García-López JA, Saura-Llamas I, McGrady JE, Bautista D, Vicente J (2012) Organometallics 31:8333–8347

    Article  Google Scholar 

  29. García-López J-A, Oliva-Madrid M-J, Saura-Llamas I, Bautista D, Vicente J (2012) Organometallics 31:6351–6364

    Article  Google Scholar 

  30. Vicente J, González-Herrero P, Frutos-Pedreño R, Chicote M-T, Jones PG, Bautista D (2011) Organometallics 30:1079–1093

    Article  CAS  Google Scholar 

  31. Roiban J-D, Serrano E, Soler T, Contel M, Grosu I, Cativiela C, Urriolabeitia EP (2010) Organometallics 29:1428–1435

    Article  CAS  Google Scholar 

  32. Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) Chem Rev 107:5318–5365

    Article  CAS  Google Scholar 

  33. Lyons TW, Sanford MS (2010) Chem Rev 110:1147–1169

    Article  CAS  Google Scholar 

  34. Pattanayak P, Pratihar JL, Patra D, Puranik VG, Chattopadhyay S (2008) Polyhedron 27:2209–2215

    Article  CAS  Google Scholar 

  35. Patra D, Pattanayak P, Pratihar JL, Chattopadhyay S (2013) Polyhedron 51:46–53

    Article  CAS  Google Scholar 

  36. Bhawmick R, Das P, Neogi DN, Bandyopadhyay P (2006) Polyhedron 25:1177–1181

    Article  CAS  Google Scholar 

  37. Kamaraj K, Bandyopadhyay D (1997) J Am Chem Soc 119:8099–8100

    Article  CAS  Google Scholar 

  38. Bhawmick R, Bandyopadhyay P (1996) Polyhedron 15:2923–2926

    Article  CAS  Google Scholar 

  39. Bhawmick R, Bandyopadhyay D (1996) Transit Met Chem 21:187–188

    Article  CAS  Google Scholar 

  40. Sinha C (1994) Transit Met Chem 19:41–48

    Article  CAS  Google Scholar 

  41. Chattopadhyay S, Sinha C, Choudhury SB, Chakravorty A (1992) J Organomet Chem 427:111–123

    Article  CAS  Google Scholar 

  42. Pal CK, Chattopadhyay S, Sinha C, Chakravorty A (1992) J Organomet Chem 439:91–99

    Article  CAS  Google Scholar 

  43. Sinha CR, Bandyopadhyay D, Chakravorty A (1988) J Chem Soc Chem Commun 468–470

  44. Mahapatra AK, Bandyopdhyay D, Bandyopadhayay P, Chakravorty A (1986) Inorg Chem 25:2214–2221

    Article  CAS  Google Scholar 

  45. Mahapatra AK, Bandyopadhyay D, Bandyopadhyay P, Chakravorty A (1984) J Chem Soc Chem Commun 999–1000

  46. Grigor BA, Nielson AJ (1977) J Organomet Chem 129:C17–C18

    Article  CAS  Google Scholar 

  47. Valk J-M, Boersma J, van Koten G (1996) Organometallics 15:4366–4372

    Article  CAS  Google Scholar 

  48. Valk J-M, van Belzen R, Boersma J, Spek AL, van Koten G (1994) J Chem Soc Dalton Trans 2293–2302

  49. Alsters PL, Teunissen HT, Boersma J, Spek AL, van Koten G (1993) Organometallics 12:4691–4696

    Article  CAS  Google Scholar 

  50. Alsters PL, Teunissen HT, Boersma J, van Koten G (1990) Recl Trav Chim Pays-Bas 109:487–489

    Article  CAS  Google Scholar 

  51. Wadhwani P, Mukherjee M, Bandyopadhyay D (2001) J Am Chem Soc 123:12430–12431

    Article  CAS  Google Scholar 

  52. Kamaraj K, Bandyopadhyay D (1999) Organometallics 18:438–446

    Article  CAS  Google Scholar 

  53. Wadhwani P, Bandyopadhyay D (2000) Organometallics 19:4435–4436

    Article  CAS  Google Scholar 

  54. Bhawmick R, Biswas H, Bandyopadhyay P (1995) J Organomet Chem 498:81–83

    Article  CAS  Google Scholar 

  55. Dick AR, Kampf JW, Sanford MS (2005) J Am Chem Soc 127:12790–12791

    Article  CAS  Google Scholar 

  56. Alsters PL, Boersma J, van Koten G (1991) Tetrahedron Lett 32:675–678

    Article  CAS  Google Scholar 

  57. Peterson DL, Keuseman KJ, Kataeva NA, Kuz’mina LG, Howard JAK, Dunina VV, Smoliakova IP (2002) J Organomet Chem 654:66–73

    Article  CAS  Google Scholar 

  58. Yang H, Khan MA, Nicholas KM (1994) J Mol Cat 91:319–334

    Article  CAS  Google Scholar 

  59. Gómez-Simón M, Jansat S, Muller G, Paneylla D, Font-Bardia M, Solans X (1997) J Chem Soc Dalton Trans 3755–3764

  60. Miller KJ, Baag JH, Abu-Omar MM (1999) Inorg Chem 38:4510–4514

    Article  CAS  Google Scholar 

  61. Dehen CJ, Keuseman KJ, Smoliakova IP (2003) J Undergrad Chem Res 2:91–94

    CAS  Google Scholar 

  62. Smoliakova IP, Keuseman KJ, Haagenson DC, Wellmann DM, Colligan PB, Kataeva NA, Churakov AV, Kuz’mina LG, Dunina VV (2000) J Organomet Chem 603:86–97

    Article  CAS  Google Scholar 

  63. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New York

    Google Scholar 

  64. Calmuschi B, Englert U (2002) Acta Cryst C58:m545–m548

    CAS  Google Scholar 

  65. Klaus AJ, Rys P (1981) Helv Chim Acta 64:1452–1466

    Article  CAS  Google Scholar 

  66. Chaubey B, Mobin SM, Balakrishna MS (2014) Dalton Trans 43:584–591

    Article  CAS  Google Scholar 

  67. Gordon AJ, Ford RA (1972) The chemist’s companion: A handbook of practical data, techniques, and references. Wiley, New York

    Google Scholar 

  68. Bolm C, Weickhardt K, Zehnder M, Glasmacher D (1991) Helv Chim Acta 74:717–726

    Article  CAS  Google Scholar 

  69. Takemoto Y, Kuraoka S, Hamaue N, Aoe K, Hiramatsu H, Iwata C (1996) Tetrahedron 52:14177–14188

    Article  CAS  Google Scholar 

  70. Blessing R (1995) Acta Cryst A51:33–38

    Article  CAS  Google Scholar 

  71. SAINT+ V6.45, Bruker analytical X-ray systems (Madison, WI, 2003)

  72. Altomare A, Burla MC, Camalli M, Cascarano G, Giacovazzo C, Guagliardi A, Molitermi AGG, Polidori G, Spagna R (1998) J Appl Cryst 32:115–119

    Article  Google Scholar 

  73. SHELXTL V6.14, Bruker analytical X-ray Systems (Madison, WI, 2000)

Download references

Acknowledgments

The authors would like to thank the University of North Dakota for financial support. The authors are also grateful to Benjamin E. Kucera, Victor G. Young, Jr., and the X-ray Crystallographic Laboratory in the Department of Chemistry, University of Minnesota, for the X-ray crystal structure of complex 4a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina P. Smoliakova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukowski, J.E., Keuseman, K.J. & Smoliakova, I.P. Reactions of m-chloroperoxybenzoic acid with dimeric cyclopalladated complexes derived from 2-phenyl-2-oxazolines. Transition Met Chem 40, 877–889 (2015). https://doi.org/10.1007/s11243-015-9984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9984-4

Keywords

Navigation