Skip to main content
Log in

Copper(I) complexes of phenanthrolineimidazole ligands: structures, photophysical properties, and quantum chemical studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three copper(I) complexes, [Cu(PimP)(POP)]PF6 (1), [Cu(NimP)(POP)]PF6 (2), and [Cu(AimP)(POP)]PF6 (3) (PimP = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline, NimP = 2-(2-naphthyl-1H-imidazo[4,5-f]phenanthroline, AimP = 2-(9-anthryl)-1H-imidazo[4,5-f]phenanthroline, POP = bis[2-diphenylphosphino]-phenyl)ether) have been synthesized and characterized. Investigations into the effects of the varying substituents on the structural, absorption, and emission characteristics of the corresponding complexes are presented. Complexes 1 and 2 exhibit similar photophysical properties with the weaker lowest lying MLCT absorption at λ > 400 nm and the phosphorescence 3MLCT/3LLCT emission in the range of 570–590 nm, whereas complex 3 shows different absorption and emission properties, in which the LLCT absorption band is overlapped with the structured absorption bands belonging to the characteristic peaks of the anthracene moiety, and the emitting excited state is described as the 3LLCT character. Density functional theory and time-dependent density functional theory calculations were employed to rationalize the photophysical properties of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McMillin DR, Buckner MT, Ahn BT (1977) Inorg Chem 16:943. doi:10.1021/ic50170a046

    Article  CAS  Google Scholar 

  2. Funaki T, Funakoshi H, Kitao O, Onozawa-Komatsuzaki N, Kasuga K, Sayama K, Sugihara H (2012) Angew Chem Int Ed 51:7528. doi:10.1002/anie.201108738

    Article  CAS  Google Scholar 

  3. Bolink HJ, Cappelli L, Coronado E, Gavina P (2005) Inorg Chem 44:5966. doi:10.1021/ic0507058

    Article  CAS  Google Scholar 

  4. Wong KMC, Chan MMY, Yam VWW (2014) Adv Mater 26:5558. doi:10.1002/adma.201306327

    Article  CAS  Google Scholar 

  5. Cunningham CT, Cunningham KLH, Michalec JF, McMillin DR (1999) Inorg Chem 38:4388. doi:10.1021/ic9906611

    Article  CAS  Google Scholar 

  6. Felder D, Nierengarten JF, Barigelletti F, Ventura B, Armaroli N (2001) J Am Chem Soc 123:6291. doi:10.1021/ja0043439

    Article  CAS  Google Scholar 

  7. Kern JM, Sauvage JP, Weidmann JL, Armaroli N, Flamigni L, Ceroni P, Balzani V (1997) Inorg Chem 36:5329. doi:10.1021/ic970707v

    Article  CAS  Google Scholar 

  8. McCusker CE, Castellano FN (2013) Inorg Chem 52:8114. doi:10.1021/ic401213p

    Article  CAS  Google Scholar 

  9. Femoni C, Muzzioli S, Palazzi A, Stagni S, Zacchini S, Monti F, Accorsi G, Bolognesi M, Armaroli N, Massi M, Valenti G, Marcaccio M (2013) Dalton Trans 42:997. doi:10.1039/c2dt32056h

    Article  CAS  Google Scholar 

  10. Nishikawa M, Sawamura S, Haraguchi A, Morikubo J, Takao K, Tsubomura T (2015) Dalton Trans 44:411. doi:10.1039/c4dt03176h

    Article  CAS  Google Scholar 

  11. Chen JL, Cao XF, Wang JY, He LH, Liu ZY, Wen HR, Chen ZN (2013) Inorg Chem 52:9727. doi:10.1021/ic4002829

    Article  CAS  Google Scholar 

  12. Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) J Am Chem Soc 124:6. doi:10.1021/ja012247h

    Article  CAS  Google Scholar 

  13. Armaroli N, Accorsi G, Holler M, Moudam O, Nierengarten JF, Zhou Z, Wegh RT, Welter R (2006) Adv Mater 18:1313. doi:10.1002/adma.20052365

    Article  CAS  Google Scholar 

  14. Zhang QS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Funct Mater 16:1203. doi:10.1002/adfm.200500691

    Article  CAS  Google Scholar 

  15. Chi Y, Tong BH, Chou PT (2014) Coord Chem Rev 281:1. doi:10.1016/j.ccr.2014.08.012

    Article  CAS  Google Scholar 

  16. Linfoot CL, Richardson P, Hewat TE, Moudam O, Forde MM, Collins A, White F, Robertson N (2010) Dalton Trans 39:8945. doi:10.1039/c0dt00190b

    Article  CAS  Google Scholar 

  17. Linfoot CL, Leitl MJ, Richardson P, Rausch AF, Chepelin O, White FJ, Yersin H, Robertson N (2014) Inorg Chem 53(2014):10854. doi:10.1021/ic500889s

    Article  CAS  Google Scholar 

  18. Chao H, Li RH, Ye BH, Li H, Feng XL, Cai JW, Zhou JY, Ji LN (1999) J Chem Soc Dalton Trans. doi:10.1039/a905790k

    Google Scholar 

  19. Cardinaels T, Ramaekers J, Nochemann P, Driesen K, Hecker KV, Meervelt LV, Lei SB, Feyter SD, Guillon D, Donnio B, Binnemans K (2008) Chem Mater 20:1278. doi:10.1021/cm070637i

    Article  CAS  Google Scholar 

  20. Zhao F, Wang JX, Wang YB (2012) Inorg Chim Acta 387:100. doi:10.1016/j.ica.2012.01.001

    Article  CAS  Google Scholar 

  21. Wang JX, Xia HY, Liu WQ, Zhao F, Wang YB (2013) Inorg Chim Acta 394:92. doi:10.1016/j.ica.2012.07.032

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, CrossJB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 1. Gaussian, Wallingford

  23. Runge E, Gross EK (1984) Phys Rev Lett 52:997. doi:10.1103/physrevlett.52.997

    Article  CAS  Google Scholar 

  24. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897. doi:10.1021/j100389a010

    Article  CAS  Google Scholar 

  25. Hariharan PC, Pople JA (1974) Mol Phys 27:209. doi:10.1080/00268977400100171

    Article  CAS  Google Scholar 

  26. Gordon MS (1980) Chem Phys Lett 76:163. doi:10.1016/0009-2614(80)80628-2

    Article  CAS  Google Scholar 

  27. Hay PJ, Wadt WR (1985) J Chem Phys 82:270. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  28. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439. doi:10.1063/1.475855

    Article  CAS  Google Scholar 

  29. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218. doi:10.1063/1.477483

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396. doi:10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  31. Lu T, Chen FW (2012) J Comput Chem 33:580. doi:10.1002/jcc.22885

    Article  Google Scholar 

  32. Hiort C, Lincoln P, Norden B (1993) J Am Chem Soc 115:3448. doi:10.1021/ja00062a007

    Article  CAS  Google Scholar 

  33. Wang QM, Tamiaki H (2009) J Photochem Photobiol A 206:124. doi:10.1016/j.jphotochem.2009.05.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Nos. 21462020 and 21443010), Jiangxi Science and Technology Normal University Key Laboratory of Organic–Inorganic Composite Materials (Key training base), and the Natural Science Foundation of Jiangxi Province (No. 20151BAB203006). The authors thank the Guizhou University High Performance Computation Chemistry Laboratory (GHPCC) for help with computational studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhao or Hong-Ying Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SX., Wang, JL., Zhao, F. et al. Copper(I) complexes of phenanthrolineimidazole ligands: structures, photophysical properties, and quantum chemical studies. Transition Met Chem 40, 723–732 (2015). https://doi.org/10.1007/s11243-015-9967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9967-5

Keywords

Navigation