Skip to main content
Log in

A palladium–phosphine catalytic system as an active and recycable precatalyst for Suzuki coupling in water

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The Suzuki–Miyaura reaction of various aryl halides with aryl boronic acids using {[Ph2PCH2PPh2CH=C(O)(C10H7)]PdCl2} as a catalyst has been investigated. The X-ray crystal structure of the catalyst reveals a five-membered chelate ring formed by coordination of the ligand through the phosphine group and the ylidic carbon atom to the metal center. This palladacycle exhibited excellent activities and reusability in the aqueous phase for the Suzuki cross-coupling reactions of arylboronic acids with aryl halides. The proposed protocol featured mild reaction conditions and notable simplicity and efficiency using Cs2CO3 as a base in water. The catalytic system could be reused four times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou Z-Z, Liu F-S, Shen D-S, Tan C, Luo L-Y (2011) Inorg Chem Commun 14:659–662

    Article  CAS  Google Scholar 

  2. Littke AF, Fu GC (2002) Angew Chem Int Ed 41:4176–4211

    Article  CAS  Google Scholar 

  3. Alonso F, Beletskaya IP, Yus M (2008) Tetrahedron 64:3047–3101

    Article  CAS  Google Scholar 

  4. Polshettiwar V, Decottignies A, Len C, Fihri A (2010) ChemSusChem 3:502–522

    Article  CAS  Google Scholar 

  5. Teo S, Weng Z, Hor T (2011) J Organomet Chem 696:2928–2934

    Article  CAS  Google Scholar 

  6. Tang Y-Q, Lu J-M, Shao L-X (2011) J Organomet Chem 696:3741–3744

    Article  CAS  Google Scholar 

  7. Lasri J, MacLeod TC, Pombeiro AJ (2011) Appl Catal A Gen 397:94–102

    Article  CAS  Google Scholar 

  8. Alizadeh A, Khodaei M, Kordestani D, Beygzadeh M (2013) Tetrahedron Lett 54:291–294

    Article  CAS  Google Scholar 

  9. Weng Z, Teo S, Hor TA (2007) Acc Chem Res 40:676–684

    Article  CAS  Google Scholar 

  10. Fu GC (2008) Acc Chem Res 41:1555–1564

    Article  CAS  Google Scholar 

  11. Molander GA, Canturk B (2009) Angew Chem Int Ed 48:9240–9261

    Article  CAS  Google Scholar 

  12. Martin R, Buchwald SL (2008) Acc Chem Res 41:1461–1473

    Article  CAS  Google Scholar 

  13. Punji B, Ganesamoorthy C, Balakrishna MS (2006) J Mol Catal A Chem 259:78–83

    Article  CAS  Google Scholar 

  14. Bedford RB, Welch SL (2001) Chem Commun, pp 129–130

  15. Aizawa S-I, Hase T, Wada T (2007) J Organomet Chem 692:813–818

    Article  CAS  Google Scholar 

  16. Chahen L, Therrien B, Süss-Fink G (2006) J Organomet Chem 691:4257–4264

    Article  CAS  Google Scholar 

  17. Milde B, Schaarschmidt D, Ecorchard P, Lang H (2012) J Organomet Chem 706:52–65

    Article  Google Scholar 

  18. Aizawa S-I, Majumder A, Yokoyama Y, Tamai M, Maeda D, Kitamura A (2009) Organometallics 28:6067–6072

    Article  CAS  Google Scholar 

  19. Milde B, Packheiser R, Hildebrandt S, Schaarschmidt D, Rüffer T, Lang H (2012) Organometallics 31:3661–3671

    Article  CAS  Google Scholar 

  20. Sabounchei SJ, Panahimehr M, Ahmadi M, Akhlaghi F, Boscovic C (2014) C R Chim 17:81–90

    Article  CAS  Google Scholar 

  21. Frey GD, Schütz J, Herdtweck E, Herrmann WA (2005) Organometallics 24:4416–4426

    Article  CAS  Google Scholar 

  22. Miyaura N, Yanagi T, Suzuki A (1981) Synth Commun 11:513–519

    Article  CAS  Google Scholar 

  23. Farina V (2004) Adv Synth Catal 346:1553–1582

    Article  CAS  Google Scholar 

  24. Dupont J, Consorti CS, Spencer J (2005) Chem Rev 105:2527–2572

    Article  CAS  Google Scholar 

  25. Subhas MS, Racharlawar SS, Sridhar B, Kennady PK, Likhar PR, Kantam ML, Bhargava SK (2010) Org Biomol Chem 8:3001–3006

    Article  CAS  Google Scholar 

  26. Sabounchei SJ, Ahmadi M, Panahimehr M, Bagherjeri FA, Nasri Z (2014) J Mol Catal A Chem 383:249–259

    Article  Google Scholar 

  27. Sabounchei SJ, Panahimehr M, Ahmadi M, Nasri Z, Khavasi HR (2013) J Organomet Chem 723:207–213

    Article  CAS  Google Scholar 

  28. D. S. C. GmbH, 1.30 ed., Germany, 2005, Program for the acquisition and analysis of data

  29. D. S. C. GmbH, Germany., 1.28b ed., 2005, Program for data reduction and absorption correction

  30. D. S. C. GmbH, Germany., 2.05 ed., 2004, Program for crystal optimization for numerical absorption correction

  31. Sheldrick GM (2007) Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  32. D. S. C. GmbH, Germany., 1.07b ed., 2000, Crystallographic package

  33. Spek AL (2009) Acta Crystallogr D65:148–155

    Google Scholar 

  34. Steffen W, Palenik GJ (1976) Inorg Chem 15:2432–2439

    Article  CAS  Google Scholar 

  35. Falvello LR, Margalejo ME, Navarro R, Urriolabeitia EP (2003) Inorg Chim Acta 347:75–85

    Article  CAS  Google Scholar 

  36. Sabounchei SJ, Panahimehr M, Khavasi HR, Bagherjeri FA, Boscovic C (2014) Chem Pap 68:624–632

    Article  CAS  Google Scholar 

  37. Champness NR, Kelly PF, Levason W, Reid G, Slawin AM, Williams DJ (1995) Inorg Chem 34:651–657

    Article  CAS  Google Scholar 

  38. Batchelor RJ, Einstein FW, Gay ID, Gu J, Pinto BM, Zhou X (1996) Inorg Chem 35:3667–3674

    Article  CAS  Google Scholar 

  39. Downard AJ, Bond AM, Clayton AJ, Hanton LR, McMorran DA (1996) Inorg Chem 35:7684–7690

    Article  CAS  Google Scholar 

  40. Sabounchei SJ, Samiee S, Nematollahi D, Naghipour A, Morales-Morales D (2010) Inorg Chim Acta 363:3973–3980

    Article  CAS  Google Scholar 

  41. Sabounchei SJ, Shahriary P, Salehzadeh S, Gholiee Y, Nematollahi D, Chehregani A, Amani A (2014) New J Chem 38:1199–1210

    Article  CAS  Google Scholar 

  42. Sabounchei SJ, Shahriary P, Salehzadeh S, Gholiee Y, Nematollahi D, Chehregani A, Amani A, Afsartala Z (2014) Spectrochim Acta A 135:1019–1031

    Article  Google Scholar 

  43. Cotton FA (1998) A comprehensive text. Intersci, p 917

  44. Wilkinson G, Gillard R, McCleverty J (1987) Pergamon, Oxford, pp 534–774

  45. Sabounchei SJ, Ahmadi M, Nasri Z, Shams E, Salehzadeh S, Gholiee Y, Karamian R, Asadbegy M, Samiee S (2013) C R Chim 16:159–175

    Article  CAS  Google Scholar 

  46. Chatt J, Hart F, Watson H (1962) J Chem Soc, pp 2537–2545

  47. Marziale AN, Jantke D, Faul SH, Reiner T, Herdtweck E, Eppinger J (2011) Green Chem 13:169–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Bu-Ali Sina University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Javad Sabounchei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabounchei, S.J., Hosseinzadeh, M., Panahimehr, M. et al. A palladium–phosphine catalytic system as an active and recycable precatalyst for Suzuki coupling in water. Transition Met Chem 40, 657–663 (2015). https://doi.org/10.1007/s11243-015-9959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9959-5

Keywords

Navigation