Skip to main content
Log in

Synthesis, characterization and antioxidant evaluation of metal complexes derived from a dianil ligand with a flexible linkage: anomalous magnetic behavior of the nickel complex

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and characterization of N,N′-bis (1-naphthaldimine)-p-oxydianiline, H2L, and its Zn(II), Cu(II), Ni(II) and Co(II) complexes are reported. Single crystal X-ray structural analysis showed that H2L consists of two tautomers where the central diphenylether unit is flanked by either two ketoamino forms or by one ketoamino and one enolimino form. Physico-chemical data revealed the formation of non-electrolytic [M2L2(2H2O) n ]·mH2O (n and m = 0–2) complexes with variable geometries. The nickel complex exhibited anomalous magnetic behavior compared to literature analogues. This result is attributed to molecular association and suggests the existence of both planar and octahedral forms in a conformational equilibrium. These complexes exhibit thermal stability up to 700 °C, except for the Ni(II) complex which degraded to its oxide. Antimicrobial screening data showed that H2L had no efficacy against a panel of pathogenic microorganisms, whereas the Ni(II) complex exhibited potency both as an antibacterial and antifungal agent. The properties of the complexes with respect to DPPH radical scavenging, acetyl cholinesterase inhibition and antihemolytic activity were evaluated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sah AK, Tanase T, Mikuriya M (2006) Inorg Chem 45:2083–2092

    Article  CAS  Google Scholar 

  2. Zhang JJ, Zhou HJ, Lachgar A (2007) Angew Chem Int Ed 46:4995–4998

    Article  CAS  Google Scholar 

  3. Hadjoudis E, Mavridis IM (2004) Chem Soc Rev 33:579–588

    CAS  Google Scholar 

  4. Bagihalli GB, Avaji PG, Patil SA, Badami PS (2008) Eur J Med Chem 43:2639–2649

    Article  CAS  Google Scholar 

  5. Tarushi A, Totta X, Papadopoulos A, Kljun J, Turel I, Kessissoglou DP, Psomas G (2014) Eur J Med Chem 74:187–198 (and references therein)

    Article  CAS  Google Scholar 

  6. Qian YP, Shang YJ, Teng QF, Chang J, Fan GJ, Wei X, Li RR, Li HP, Yao XJ, Dai F, Zhou B (2011) Food Chem 126:241–248

    Article  CAS  Google Scholar 

  7. Užarević K, Rubčić M, Stilinović V, Kaitner B, Cindrić M (2010) J Mol Struct 984:232–239

    Article  Google Scholar 

  8. Popović Z, Roje V, Pavlović G, Matković-Calogović D, Giester G (2001) J Mol Str. 597:39–47 (and references therein)

    Article  Google Scholar 

  9. Elhusseiny AF, Aazam ES, Al-Amri HM (2014) Spectrochim Acta Part A 128:852–863

    Article  CAS  Google Scholar 

  10. El-Husseiny AF (2009) Pol J Chem 83:1745–1755

    CAS  Google Scholar 

  11. El Husseiny AF (2010) Asian J Chem 22:603–614

    Google Scholar 

  12. Aazam ES, EL Husseiny AF, Hitchcock PB, Alshehri JM (2008) Cent Eur J Chem. 6:319–323

    Article  CAS  Google Scholar 

  13. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  14. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  15. Sheldrick GM (1997) SHELXL-97. Programs for Crystal Structure Analysis (Release 97-2). University of Gottingen, Germany

  16. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  17. Spek AL (1990) Acta Crystallogr Sect A 46:C34

    Google Scholar 

  18. Finegold SM, Martin WJ (1982) Bailey and Scott’s Diagnostic microbiology, 6th edn. The C.V Mosby Company, St. Louis, Missouri

  19. Choi DW, King YC, Leroy P, Siest G, Wellman M (2002) Free Radic Res 36:893–904

    Article  CAS  Google Scholar 

  20. Kumar V, Lemos M, Sharma M, Shriram V (2013) Free Radic Antioxid 3:55–60

    Article  CAS  Google Scholar 

  21. Pise NM, Jena KB, Maharana D, Sabale AB, Jagtap TG (2010) Algal Biomass Utln. 1:60–73

    Google Scholar 

  22. Oyaizu M (1986) Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  23. Li X, Chen C (2012) Int Res J Pure Appl Chem 2:68

    Article  CAS  Google Scholar 

  24. Wu S, Du Y, Hu Y, Shi X, Zhang L (2013) Food Chem 138:1312–1319

    Article  CAS  Google Scholar 

  25. Padmaja A, Payani T, Reddy GD, Padmavathi V (2009) Eur J Med Chem 44:4557–4566

    Article  CAS  Google Scholar 

  26. Godoy LC, Anderson CTM, Chowdhury R, Trudel LJ, Wogan GN (2012) PNAS 109:20373–20378

    Article  CAS  Google Scholar 

  27. Niño J, Hernández JA, Correa YM, Mosquera OM (2006) Mem Inst Oswaldo Cruz, Rio de Janeiro 101:783–785

    Article  Google Scholar 

  28. Kolawole OT, Akiibinu MO, Ayankunle AA, Awe EO (2013) Br J Med Med Res 3:216–229

    Article  Google Scholar 

  29. Ladd MFC, Palmer RA (2013) Structure determination by X-ray crystallography: analysis by X-rays and neutrons. Springer, New York

    Book  Google Scholar 

  30. Nakamoto K (1960) J Phys Chem 64:1620

    Article  Google Scholar 

  31. Saied KEM (1994) Ind J Chem 33A:830

    Google Scholar 

  32. Mishra AK, Mishra SB, Manav N, Kumar R, Sharad RC, Saluja D, Kaushik NK (2007) Spectrochim Acta Part A 66:1042–1047

    Article  CAS  Google Scholar 

  33. Holm RH, McKinney TM (1960) J Am Chem Soc 82:5506

    Article  CAS  Google Scholar 

  34. Majumdar AK, Bhattacharyya BC (1965) J Inorg Nucl Chem 27:143–147

    Article  CAS  Google Scholar 

  35. Kalia SB, Lumba K, Kaushal G, Sharma M (2007) Ind J Chem 46A:1233–1239

    CAS  Google Scholar 

  36. Hathaway BJ, Billing DE (1970) Coord Chem Rev 5:143–207

    Article  CAS  Google Scholar 

  37. Claramunt R, Lopez C, Mana MS, Sanz D, Elguero J (2006) Prog Nucl Magn Reson Spectrosc 49:169–206

    Article  CAS  Google Scholar 

  38. Nazir H, Yildiz M, Yilmaz H, Tahir M, Ulku D (2000) J Mol Struct 524:241–250

    Article  CAS  Google Scholar 

  39. Alarcon SH, Olivieri AC, Gonzalez-Sierra M (1994) J Chem Soc Perkin Trans 2:1067–1070

    Article  Google Scholar 

  40. Alarcon SH, Olivieri AC, Sanz D, Claramunt RM, Elguero J (2004) J Mol Struct 705:1–9

    Article  CAS  Google Scholar 

  41. Lunyu Q, Yingji S, Yaguang C, Ming Y, Jun P (1994) Synth React Inorg Met-Org Chem 24:1339

    Article  Google Scholar 

  42. Lippard SJ, Berg JM (1994) Principles of bioorganic chemistry. University Science Book, Mill Valley

    Google Scholar 

  43. Aly MRE, Fodah HHA, Saleh SY (2014) Eur J Med Chem 76:517–530

    Article  Google Scholar 

  44. Abd El-Wahab A, Ghareeb DA, Sarhan EM, Abu-Serie MM, Demellawy MS (2013) BMC Complem Altern Med 13:218

    Article  Google Scholar 

  45. Mahendra Raj K, Mruthyunjayaswamy BHM (2014) J Saudi Chem Soc. doi:10.1016/j.jscs.2014.01.001 (and references therein)

  46. Khalil BI, Younus MA, Salih TM, Rumez RM, Khammas BW (2014) Chem Mater Res 6:55–62

    Google Scholar 

  47. Lv J, Liu T, Cai S, Wang X, Liu L, Wang Y (2006) J Inorg Biochem 100:1888–1896

    Article  CAS  Google Scholar 

  48. Rahman M, Rahaman A, Basunia MA, Fatima N, Hossain S (2013) Eur J Med Plants 3:127–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel F. Elhusseiny.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhusseiny, A.F., M Hassan, H.H.A., Hussien, H. et al. Synthesis, characterization and antioxidant evaluation of metal complexes derived from a dianil ligand with a flexible linkage: anomalous magnetic behavior of the nickel complex. Transition Met Chem 40, 643–655 (2015). https://doi.org/10.1007/s11243-015-9958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9958-6

Keywords

Navigation