Substituent effects in reduction-induced synthesis of ansa-titanocenes

Abstract

Bis{(diphenylvinylsilyl)tetramethylcyclopentadienyl}titanium dichloride [TiCl25-C5Me4(SiPh2CH=CH2)}2] (1) is reduced with a half molar equivalent of magnesium to the monochloride ([TiCl{η5-C5Me4(SiPh2CH=CH2)}2] (2), whereas one molar equivalent of magnesium affords the titanocene [Ti{η5-C5Me4(SiPh2CH=CH2)}{η52-C5Me4(SiPh2CH=CH2)}] (3) stabilized by η2-coordination of one of the two vinyl groups to titanium(II). In the presence of excess magnesium, the vinyl moieties of 3 undergo intramolecular coupling to afford the ansa-titanocene [Ti(η552-C5Me4SiPh2CH=CHCH2CH2SiPh2C5Me4)] (4) possessing the η2-coordinated double bond in lateral position of its ansa-chain. The symmetrical ansa-titanocene [Ti(η552-C5Me4SiPh2CH2CH=CHCH2SiPh2C5Me4)] (5) was not obtained although its DFT-calculated energy is only slightly higher than that of 4. It is considered that transient 5 gives rise to non-identified tar-like by-products which inherently accompany the formation of 4.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Smith JA, von Seyerl J, Huttner G, Brintzinger HH (1979) J Organomet Chem 173:175–185

    Article  CAS  Google Scholar 

  2. 2.

    Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM (1995) Angew Chem Int Ed Engl 34:1143–1170

    Article  CAS  Google Scholar 

  3. 3.

    Shapiro PJ (2002) Coord Chem Rev 231:67–81

    Article  CAS  Google Scholar 

  4. 4.

    Prashar S, Antiñolo A, Otero A (2006) Coord Chem Rev 250:133–154

    Article  CAS  Google Scholar 

  5. 5.

    Pinkas J, Lamač M (2015) Coord Chem Rev 296:45–90

    Article  CAS  Google Scholar 

  6. 6.

    Burger P, Diebold J, Gutmann S, Hund HU, Brintzinger HH (1992) Organometallics 11:1319–1327

    Article  CAS  Google Scholar 

  7. 7.

    Erker G, Mollenkopf C, Grehl M, Fröhlich R, Krüger C, Noe R, Riedel M (1994) Organometallics 13:1950–1955

    Article  CAS  Google Scholar 

  8. 8.

    Jödicke T, Menges F, Kehr G, Erker G, Höweler U, Fröhlich R (2001) Eur J Inorg Chem 8:2097–2106

    Article  Google Scholar 

  9. 9.

    Pinkas J, Lukešová L, Gyepes R, Císařová I, Kubišta J, Horáček M, Mach K (2010) Organometallics 29:5199–5208

    Article  CAS  Google Scholar 

  10. 10.

    Erker G, Wilker S, Krüger C, Nolte M (1993) Organometallics 12:2140–2151

    Article  CAS  Google Scholar 

  11. 11.

    Bai SD, Wei XH, Guo JP, Liu DS, Zhou ZY (1999) Angew Chem Int Ed 38:1926–1928

    Article  CAS  Google Scholar 

  12. 12.

    Greger I, Kehr G, Fröhlich R, Erker G (2010) Organometallics 29:3210–3221

    Article  CAS  Google Scholar 

  13. 13.

    Zemánek J, Horáček M, Thewalt U, Štěpnička P, Kubišta J, Petrusová L, Mach K (2001) Inorg Chem Commun 4:520–525

    Article  Google Scholar 

  14. 14.

    Pinkas J, Gyepes R, Císařová I, Kubišta J, Mach K, Horáček M (2011) Collect Czech Chem Commun 76:177–191

    Article  CAS  Google Scholar 

  15. 15.

    Warren TH, Erker G, Fröhlich R, Wibbeling B (2000) Organometallics 19:127–134

    Article  CAS  Google Scholar 

  16. 16.

    Hüerländer D, Kleigrewe N, Kehr G, Erker G, Fröhlich R (2002) Eur J Inorg Chem 10:2633–2642

    Article  Google Scholar 

  17. 17.

    Horáček M, Štěpnička P, Gyepes R, Císařová I, Tišlerová I, Zemánek J, Kubišta J, Mach K (2000) Chem Eur J 6:2397–2408

    Article  Google Scholar 

  18. 18.

    Pinkas J, Gyepes R, Kubišta J, Horáček M, Mach K (2011) Organometallics 30:2581–2586

    Article  CAS  Google Scholar 

  19. 19.

    Lukešová L, Štěpnička P, Fejfarová K, Gyepes R, Císařová I, Horáček M, Kubišta J, Mach K (2002) Organometallics 21:2639–2653

    Article  Google Scholar 

  20. 20.

    Luinstra GA, Vogelzang J, Teuben JH (1992) Organometallics 11:2273–2281

    Article  CAS  Google Scholar 

  21. 21.

    Lukešová L, Horáček M, Štěpnička P, Fejfarová K, Gyepes R, Císařová I, Kubišta J, Mach K (2002) J Organomet Chem 663:134–144

    Article  Google Scholar 

  22. 22.

    Pinkas J, Gyepes R, Císařová I, Kubišta J, Horáček M, Mach K (2015) Dalton Trans 44:7276–7291

    Article  CAS  Google Scholar 

  23. 23.

    Pinkas J, Císařová I, Gyepes R, Kubišta J, Horáček M, Mach K (2012) Organometallics 31:5478–5493

    Article  CAS  Google Scholar 

  24. 24.

    Lukešová L, Horáček M, Štěpnička P, Gyepes R, Císařová I, Kubišta J, Mach K (2004) J Organomet Chem 689:1919–1929

    Article  Google Scholar 

  25. 25.

    Horáček M, Štĕpnička P, Fejfarová K, Gyepes R, Císařová I, Kubišta J, Mach K (2002) J Organomet Chem 642:148–155

    Article  Google Scholar 

  26. 26.

    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–S19

    Article  Google Scholar 

  27. 27.

    Cohen SA, Auburn PR, Bercaw JE (1983) J Am Chem Soc 105:1136–1143

    Article  CAS  Google Scholar 

  28. 28.

    Antropiusová H, Dosedlová A, Hanuš V, Mach K (1981) Transition Met Chem 6:90–93

    Article  Google Scholar 

  29. 29.

    Varga V, Mach K, Polášek M, Sedmera P, Hiller J, Thewalt U, Troyanov SI (1996) J Organomet Chem 506:241–251

    Article  CAS  Google Scholar 

  30. 30.

    Denzo HKL, Scalepack program package by Nonius, Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  Google Scholar 

  31. 31.

    Altomare A, Burla MC, Camalli M, Cascarano G, Giacovazzo C, Guagliardi A, Polidori G (1994) J Appl Crystallogr 27:435–436

    Google Scholar 

  32. 32.

    Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  33. 33.

    Spek AL (2007) PLATON a multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  34. 34.

    Frisch MJ et al (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  35. 35.

    Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  36. 36.

    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute. University of Wisconsin, Madison

    Google Scholar 

  37. 37.

    Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Czech Science Foundation (Project No. P207/12/2368). R. Gy. is grateful to Slovak Grant Agency VEGA (Project No. 1/0336/13).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Horáček.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinkas, J., Císařová, I., Gyepes, R. et al. Substituent effects in reduction-induced synthesis of ansa-titanocenes. Transition Met Chem 41, 143–152 (2016). https://doi.org/10.1007/s11243-015-0006-3

Download citation

Keywords

  • Molar Equivalent
  • Titanocene
  • Titanocene Dichloride
  • SiH2Ph2
  • Titanium Dichloride