Skip to main content
Log in

Ruthenium(II) polypyridyl complexes: synthesis, cytotoxicity in vitro, reactive oxygen species, mitochondrial membrane potential and cell cycle arrest studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two Ru(II) polypyridyl complexes [Ru(dmb)2(idpq)](ClO4)2 (1) (idpq = indeno[1,2-b]dipyrido[3,2-f:2′,3′-h]-quinoxaline-6-one, dmb = 4,4′-dimethyl-2,2′-bipyridine) and [Ru(bpy)2(idpq)](ClO4)2 (2) (bpy = 2,2′-bipyridine) have been synthesized and characterized. Their in vitro cytotoxicities, apoptosis, cellular uptake, production of reactive oxygen species (ROS), mitochondrial membrane potential assays and effects on cell cycle distribution were studied. The IC50 values range from 13.1 ± 1.1 to 30.9 ± 3.1 μM. Complex 1 is toxic to HeLa cells with an IC50 value of 13.1 ± 1.1 μM, while complex 2 shows relatively high cytotoxicity against HepG-2 cells. However, both complexes exhibit lower cytotoxicity than cisplatin toward selected cell lines under identical conditions. Both complexes can induce apoptosis and cell cycle arrest at the S and G0/G1 phases in HeLa cells, respectively. In addition, both Ru(II) complexes, which can be effectively taken up by HeLa cells, induced generation of intracellular ROS in a concentration-dependent manner and produced a decrease in mitochondrial membrane potential. The results show that these complexes induce apoptosis in HeLa cells through a ROS-mediated mitochondrial dysfunction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Lippert B (1999) Cisplatin, chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Gill MR, Thomas JA (2012) Chem Soc Rev 4:3179–3192

    Article  Google Scholar 

  3. Neidle S (2002) Nucleic acid structure and recognition. Oxford University Press, Oxford

    Google Scholar 

  4. Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206

    Article  CAS  Google Scholar 

  5. Han BJ, Jiang GB, Wang J, Li W, Huang HL, Liu YJ (2014) RSC Adv 4:40899–40906

    Article  CAS  Google Scholar 

  6. Tan CP, Lai SS, Wu SH, Hu S, Zhou LJ, Chen Y, Wang MX, Zhu YP, Lian W, Peng WL, Ji LN, Xu AL (2010) J Med Chem 53:7613–7624

    Article  CAS  Google Scholar 

  7. Jiang GB, Li W, Wang J, Han BJ, Lin GJ, Xie YY, Huang HL, Liu YJ (2014) Transit Met Chem 39:849–858

    Article  CAS  Google Scholar 

  8. Hartinger CG, Selfried SZ, Jakupee MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891–904

    Article  CAS  Google Scholar 

  9. Xie YY, Huang HL, Yao JH, Lin GJ, Jiang GB, Liu YJ (2013) Eur J Med Chem 63:603–610

    Article  CAS  Google Scholar 

  10. Yaw KY, Michael M, Abraha H, Peter JS (2005) Chem Commun 38:4764–4776

    Google Scholar 

  11. Jiang GB, Zheng X, Yao JH, Han BJ, Li W, Wang J, Huang HL, Liu YJ (2014) J Inorg Biochem 141:170–179

    Article  CAS  Google Scholar 

  12. Alessio E, Mestroni G, Bergamo A, Sava G (2004) Curr Top Med Chem 4:1525–1535

    Article  CAS  Google Scholar 

  13. Jiang GB, Xie YY, Lin GJ, Huang HL, Liang ZH, Liu YJ (2013) J Photochem Photobiol B Biol 129:48–56

    Article  CAS  Google Scholar 

  14. Devi CS, Nagababu P, Reddy VV, Sateesh V, Srishailam A, Satyanarayana S (2014) Aust J Chem 67:225–233

    CAS  Google Scholar 

  15. Li W, Jiang GB, Yao JH, Wang XZ, Wang J, Han BJ, Xie YY, Lin GJ, Huang HL, Li YJ (2014) J Photochem Photobiol B Biol 140:94–104

    Article  CAS  Google Scholar 

  16. Bergamo A, Sava G (2007) Dalton Trans 13:1267–1272

    Article  Google Scholar 

  17. Hartinger CG, Jakupec MA, Zorbas SS, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) Chem Biodivers 5:2140–2155

    Article  CAS  Google Scholar 

  18. Hotze ACG, Bacac M, Velders AH, Jansen BAJ, Kooijman H, Spek AL, Haasnoot JG, Reedijk J (2003) J Med Chem 46:1743–1750

    Article  CAS  Google Scholar 

  19. Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H, Wolfl S (2008) Chem Med Chem 3:1104–1109

    Article  CAS  Google Scholar 

  20. Lin GJ, Jiang GB, Xie YY, Huang HL, Liang ZH, Liu YJ (2013) J Biol Inorg Chem 18:873–882

    Article  CAS  Google Scholar 

  21. Devi CS, Nagababu P, Natarajan S, Deepika N, Reddy PV, Veerababu N, Singh SS, Satyanarayana S (2014) Eur J Med Chem 72:160–169

    Article  Google Scholar 

  22. Zhang JN, Yu QQ, Li Q, Yang LC, Chen LM, Zhou YH, Liu YA (2014) J Inorg Biochem 134:1–11

    Article  CAS  Google Scholar 

  23. Liu XW, Xu LC, Li H, Chao H, Zheng KC, Ji LN (2009) J Mol Struct 920:163–171

    Article  CAS  Google Scholar 

  24. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  25. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  26. Lo KK, Lee TK, Lau JS, Poon WL, Cheng SH (2008) Inorg Chem 47:200–208

    Article  CAS  Google Scholar 

  27. Jamison JM, Gilloteaux J, Taper HS, Calderon PB, Summers JL (2002) Biochem Pharmacol 63:1773–1783

    Article  CAS  Google Scholar 

  28. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Cell Death Differ 16:3–11

    Article  CAS  Google Scholar 

  29. Lin GJ, Li ZZ, Yao JH, Huang HL, Xie YY, Liu YJ (2013) Aust J Chem 66:555–563

    CAS  Google Scholar 

  30. Jiang GB, Yao JH, Wang J, Li W, Han BJ, Xie YY, Lin GJ, Huang HL, Liu YJ (2014) New J Chem 38:2554–2563

    Article  CAS  Google Scholar 

  31. Puckett CA, Barton JK (2008) Biochemistry 47:11711–11716

    Article  CAS  Google Scholar 

  32. Puckett CA, Barton JK (2007) J Am Chem Soc 129:46–47

    Article  CAS  Google Scholar 

  33. Scherz-Shouval R, Elazar Z (2007) Trends Cell Biol 17:422–427

    Article  CAS  Google Scholar 

  34. Adams DJ, Boskovic ZV, Theriault JR, Wang AJ, Stern AM, Wagner BK, Shamji AF, Schreiber SL (2013) ACS Chem Biol 8:923–929

    Article  CAS  Google Scholar 

  35. Duh PD, Chen ZT, Lee SW, Lin TP, Wang YT, Yen WJ, Kuo LF, Chu HL (2012) J Agric Food Chem 60:7866–7872

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the High-Level Personnel Project of Guangdong Province in 2013, the Fund of Guangdong Provincial Department of Science and Technology (2013B02180083) and the Joint Nature Science Fund of the Department of the Science and Technology and the First Affiliated Hospital of Guangdong Pharmaceutical University (No. GYFYLH201315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Huang or Yun-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, BJ., Jiang, GB., Wang, J. et al. Ruthenium(II) polypyridyl complexes: synthesis, cytotoxicity in vitro, reactive oxygen species, mitochondrial membrane potential and cell cycle arrest studies. Transition Met Chem 40, 153–160 (2015). https://doi.org/10.1007/s11243-014-9901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9901-2

Keywords

Navigation