Skip to main content
Log in

1,1′-bis(diphenylphosphino)ferrocene as an intramolecular or intermolecular bridging ligand related to the phenyl-functionalized diiron propanedithiolate complex: synthesis and catalysis of the reduction of protons

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reaction of the diiron propanedithiolate complex [μ-(SCH2)2CHC6H5]Fe2(CO)6 (A) with 1,1′-bis(diphenylphosphino)ferrocene (dppf) in refluxing xylene yielded an intramolecular bridged complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(μ-dppf) (1), while in MeCN in the presence of Me3NO·2H2O gave an intermolecular bridged complex [(μ-SCH2)2CHC6H5Fe2(CO)5]2(μ,κ11-dppf) (2). The structures of both complexes were fully characterized by spectroscopic methods and X-ray crystallography. In the solid state, the diphosphine spans the iron–iron vector, adopting cis basal–basal arrangement as expected in intramolecular bridged complex 1, while the diphosphine connects the two [2Fe2S] clusters by coordinating one of the two Fe atoms of each [2Fe2S] cluster in intermolecular bridged complex 2. The Fe–Fe bond length of 2.63 Å in 1 is longer than that in 2, among the longest of Fe–Fe bonds in the synthetic active sites of Fe–Fe hydrogenases. Electrochemical investigation showed that complex 1 catalyzed the reduction of protons to give dihydrogen in the presence of HBF4, but did not catalyze the oxidation of dihydrogen in the presence of pyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Georgakaki IP, Thomson LM, Lyon EJ, Hall MB, Darensbourg MY (2003) Coord Chem Rev 238–239:255

    Article  Google Scholar 

  2. Gloaguen F, Rauchfuss TB (2009) Chem Soc Rev 38:100

    Article  CAS  Google Scholar 

  3. Tard C, Pickett CJ (2009) Chem Rev 109:2245

    Article  CAS  Google Scholar 

  4. Peters JW, Lanzilotta WN, Lemon BJ (1998) Science 282:1853

    Article  CAS  Google Scholar 

  5. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13

    Article  CAS  Google Scholar 

  6. Vignais PM, Billoud B (2007) Chem Rev 107:4206

    Article  CAS  Google Scholar 

  7. Wang WG, Rauchfuss TB, Zhu LY (2014) J Am Chem Soc 136:5773

    Article  CAS  Google Scholar 

  8. Manor BC, Rauchfuss TB (2013) J Am Chem Soc 135:11895

    Article  CAS  Google Scholar 

  9. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273

    Article  CAS  Google Scholar 

  10. Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) J Organomet Chem 694:2681

    Article  CAS  Google Scholar 

  11. Wang N, Wang M, Chen L, Sun LC (2013) Dalton Trans 42:12059

    Article  CAS  Google Scholar 

  12. Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Kabirc SE, Sanchez BE (2014) Chem Commun 50:945

    Article  CAS  Google Scholar 

  13. Li CG, Zhu Y, Jiao XX, Fu XQ (2014) Polyhedron 67:416

    Article  CAS  Google Scholar 

  14. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  15. Sheldrick GM (2008) Acta Cryst A64:112

    Article  Google Scholar 

  16. Song LC, Li CG, Ge JH, Yang ZY, Wang HT, Zhang J, Hu QM (2008) J Inorg Biochem 102:1973

    Article  CAS  Google Scholar 

  17. Adam FI, Hogarth G, Kabir SE, Richards I (2008) C R Chimie 11:890

    Article  CAS  Google Scholar 

  18. Gao WM, Ekström J, Liu JH, Chen CN, Eriksson L, Weng LH, Åkermark B, Sun LC (2007) Inorg Chem 46:1981

    Article  CAS  Google Scholar 

  19. Liu XF (2014) J Organomet Chem 750:117

    Article  CAS  Google Scholar 

  20. Liu XF, Yin BS (2010) J Coord Chem 63:4061

    Article  CAS  Google Scholar 

  21. Adam FI, Hogarth G, Richards I (2007) J Organomet Chem 692:3957

    Article  CAS  Google Scholar 

  22. Li CG, Xue F, Cui MJ, Shang JY (2014) J Clust Sci. doi:10.1007/s10876-014-0763-8

    Google Scholar 

  23. Song LC, Yang ZY, Bian HZ, Hu QM (2004) Organometallics 23:3082

    Article  CAS  Google Scholar 

  24. Song LC, Yang ZY, Bian HZ, Liu Y, Wang HT, Liu XF, Hu QM (2005) Organometallics 24:6126

    Article  CAS  Google Scholar 

  25. Li P, Wang M, He CJ, Li GH, Liu XY, Chen CN, Åkermark B, Sun LC (2005) Eur J Inorg Chem 2506

  26. Wang N, Wang M, Liu J, Jin K, Chen L, Sun LC (2009) Inorg Chem 48:11551

    Article  CAS  Google Scholar 

  27. Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Dalton Trans 4158

  28. Borg SJ, Behrsing T, Best SP, Razavet M, Liu X, Pickett CJ (2004) J Am Chem Soc 126:16988

    Article  CAS  Google Scholar 

  29. Gloaguen F, Lawrence JD, Rauchfuss TB (2001) J Am Chem Soc 123:9476

    Article  CAS  Google Scholar 

  30. Felton GAN, Glass RS, Lichtenberger DL, Evans DH (2006) Inorg Chem 45:9181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chinese National Natural Science Foundation under Grant [No. 21072046]; the Chinese National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant (No. 201210467022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Gong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CG., Xue, F., Cui, MJ. et al. 1,1′-bis(diphenylphosphino)ferrocene as an intramolecular or intermolecular bridging ligand related to the phenyl-functionalized diiron propanedithiolate complex: synthesis and catalysis of the reduction of protons. Transition Met Chem 40, 47–52 (2015). https://doi.org/10.1007/s11243-014-9888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9888-8

Keywords

Navigation