Skip to main content
Log in

Synthesis, characterization, crystal structure, electrochemical properties and electrocatalytic activity of an unexpected nickel(II) Schiff base complex derived from bis(acetylacetonato)nickel(II), acetone and ethylenediamine

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synthesis, crystal structure and electrochemical properties of a Ni(II) Schiff base complex, [Ni(L)]PF6 (where L is 2,4,9,11,11-pentamethyl-2,3,4 triaza-1-one-4-amine) are reported herein. The complex has been characterized by its electrochemical behavior, X-ray crystallographic structural analysis, physio-chemical methods and spectroscopic techniques. Electrospray mass spectroscopic analysis gives a dominant ion peak with m/z = 296 which corresponds to the {[Ni(L)]PF6–HPF6}+ fragment. Cyclic voltammograms for [Ni(L)]PF6, obtained in DMF (0.1 M Bu4NPF6) at a glassy carbon electrode with a scan rate of 100 mV s−1, exhibit reversible ([NiII(L)]+/[NiI(L)]) reduction and chemically irreversible ([NiII(L)]+/[NiIII(L)]2+→ electroactive product) oxidation processes at −2.05 and 0.62 V, respectively. The diffusion coefficient, calculated using the Randles–Sevcik relationship, is 9.7 × 10−6 cms−1. Electrochemical studies reveal that the NiI reduced form of the complex is capable of catalyzing CO2 reduction at a potential that is thermodynamically more favorable than for the reduced [Ni(N,N′-ethylenebis(acetylacetoneiminato)]complex. Spectroelectrochemical analyses following bulk electrolysis of [Ni(L)]PF6 under CO2 revealed the formation of oxalate and bicarbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Curtis NF (1968) Coord Chem Rev 3:23

    Article  Google Scholar 

  2. Fisher BJ, Eisenberg R (1980) J Am Chem Soc 102:7361–7363

    Article  CAS  Google Scholar 

  3. Fujita E, Szalda DJ, Creutz C, Sutin N (1988) J Am Chem Soc 110:4870–4871

    Article  CAS  Google Scholar 

  4. Fujita E, Creutz C, Sutin N, Szalda DJ (1991) J Am Chem Soc 113:343–353

    Article  CAS  Google Scholar 

  5. Ray A, Seth BK, Pal U, Basu S (2012) Spectrochim Acta, Part A 92:164–174

    Article  CAS  Google Scholar 

  6. Gupta SK, Hitchcock PB, Kushwah YS (2002) J Coord Chem 55:1401–1407

    Article  CAS  Google Scholar 

  7. Fabbrizzi L, Lari A, Poggi A, Seghi B (1982) Inorg Chem 21:2083–2085

    Article  CAS  Google Scholar 

  8. Nias MS, Adaryani RIMA, Heydarzadeh S (2005) Transit Metal Chem 30:445–450

    Article  Google Scholar 

  9. Udugala-Ganehenege MY, Heeg MJ, Hryhorczuk LM, Wenger LE, Endicott JF (2001) Inorg Chem 40:1614–1625

    Article  CAS  Google Scholar 

  10. CrysAlisPro (2010) v 1.171.34.36, Oxford Diffraction Ltd (Agilent Technologies), Oxfordshire UK

  11. Sheldrick GM (2008) Acta Cryst Sect A 64:112–122

    Article  CAS  Google Scholar 

  12. Schwekendiek K, Glorius F (2006) Synthesis 2996–3002. http://www.organic-chemistry.org/synthesis/heterocycles/2-oxazolines.shtm. Accessed 17 May 2014

  13. Udugala-Ganehenege MY et al. (2014) Published online on 02 Aug 2014 in Transition metal Chemistry. doi:10.1007/s11243-014-9864-3

  14. Suh MP (1997) Adv Inorg Chem 44:93–146

    Article  CAS  Google Scholar 

  15. Simandi L (1992) Catalytic activation of dioxygen by metal complexes. Kluwer Academic Publishers, Dordrecht, pp 318–331

    Google Scholar 

  16. Scibioh MA, Ragini PV, Rani S, Vijayaraghavan VR, Viswanathan B (2001) Indian Academy of Sciences. Proc Indian Acad Sci (Chem. Sci.) 113(4):343–350

    Article  CAS  Google Scholar 

  17. Balazs GB, Anson FC (1992) J Electroanal Chem 322:325–345

    Article  CAS  Google Scholar 

  18. Balazs GB, Anson FC (1993) J Electroanal Chem 361:149–157

    Article  CAS  Google Scholar 

  19. Alwis C, Crayston JA, Cromie T, Eisenblatter T, Hay RW, Lampeka YD, Tsymbal LV (2000) Electrochim Acta 45:2061–2074

    Article  Google Scholar 

  20. Grochala W (2006) Phys Chem Chem Phys 8:1340–1345

    Article  CAS  Google Scholar 

  21. Cheng SC, Blaine CA, Hill MG, Mann KR (1996) Inorg Chem 35:7704–7708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial assistance from the Australian Research Council and an Endeavour Award-2011 Post-doctoral Fellowship by DEEWR and AusAid of Australia to Dr. (Mrs.) M.Y.Udugala-Ganehenege of University of Peradeniya, Sri Lanka. Assistance given by Ms. S.S. Hettiarachchi and Ms. M.C.R Peiris in carrying out the bulk electrolysis and FTIR measurements also is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manawadevi Y. Udugala-Ganehenege.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udugala-Ganehenege, M.Y., Liu, Y., Forsyth, C. et al. Synthesis, characterization, crystal structure, electrochemical properties and electrocatalytic activity of an unexpected nickel(II) Schiff base complex derived from bis(acetylacetonato)nickel(II), acetone and ethylenediamine. Transition Met Chem 39, 883–891 (2014). https://doi.org/10.1007/s11243-014-9872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9872-3

Keywords

Navigation