Skip to main content
Log in

The hapticity of octafluorocyclooctatetraene in its first-row mononuclear transition metal carbonyl complexes: effect of perfluorination

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The iron tricarbonyl complex of octafluorocyclooctatetraene was synthesized by Hughes and co-workers and shown by X-ray crystallography to have a trihapto–monohapto structure (η3,1-C8F8)Fe(CO)3 in contrast to the tetrahapto structure (η4-C8H8)Fe(CO)3 formed by the non-fluorinated cyclooctatetraene. This difference has stimulated a comprehensive density functional theoretical study of the octafluorocyclooctatetraene metal carbonyl complexes (C8F8)M(CO) n (n = 4, 3, 2, 1 for M = Ti, V, Cr, Mn, and Fe; n = 3, 2, 1 for M = Co, Ni) for comparison with their hydrogen analogues (C8H8)M(CO) n . In most such systems, the substitution of fluorine for hydrogen leads to relatively small changes in the preferred structures. However, for the iron carbonyl derivatives (C8X8)Fe(CO)3 (X = H, F), the difference observed experimentally has been confirmed by theory with (η3,1-C8F8)Fe(CO)3 and (η4-C8H8)Fe(CO)3 being the lowest energy structures by 4 and 14 kcal/mol, respectively. The ligand exchange reactions C8H8 + (C8F8)M(CO) n  → C8F8 + (C8H8)M(CO) n are predicted to be exothermic for almost all of the systems considered, with the (η3,1-C8X8)Fe(CO)3 system being the main exception. This suggests that the C8F8 ligand generally bonds more weakly to transition metals than the C8H8 ligand in accord with the electron-withdrawing effect of the ligand fluorine atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fray GI, Saxton RG (1978) The chemistry of cyclooctatetraene and its derivatives. Cambridge University Press, Cambridge

    Google Scholar 

  2. Barefoot A C III, Corcoran E W Jr, Hughes RP, Lemal DM, Saunders WD, Laird BB, Davis RE (1981) J Am Chem Soc 103:970

    Article  CAS  Google Scholar 

  3. Deganello G (1979) Transition metal complexes of cyclic polyolefins. Academic Press, New York

    Google Scholar 

  4. Manuel TA, Stone FGA (1959) Proc Chem Soc Lond 90

  5. Manuel TA, Stone FGA (1960) J Am Chem Soc 82:366

    Article  CAS  Google Scholar 

  6. Rausch MD, Schrauzer GN (1959) Chem Ind 957

  7. Nakamura A, Hagihara N (1959) Bull Chem Soc Jpn 32:880

    Article  CAS  Google Scholar 

  8. Stone FGA (1972) Pure Appl Chem 30:551

    Article  CAS  Google Scholar 

  9. Hughes RP (1990) Adv Organometal Chem 31:183

    CAS  Google Scholar 

  10. Hughes RP (2010) J Fluor Chem 131:1059

    Article  CAS  Google Scholar 

  11. Lemal DM, Buzby JM, Barefoot III AC, Grayston MW, Laganis ED (1980) J Org Chem 45:3118

    Article  CAS  Google Scholar 

  12. Hughes RP, Samkoff DE, Davis RE, Laird BB (1983) Organometallics 2:195

    Article  CAS  Google Scholar 

  13. Hemond RC, Hughes RP, Rheingold AL (1989) Organometallics 8:1261

    Article  CAS  Google Scholar 

  14. Kreiter CG, Maasbol A, Anet FAL, Kaesz HD, Winstein S (1966) J Am Chem Soc 88:3444

    Article  CAS  Google Scholar 

  15. King RB (1967) J Organometal Chem 8:139

    Article  CAS  Google Scholar 

  16. Wang H, Du Q, Xie Y, King RB, Schaefer HF (2010) J Organometal Chem 695:215

    Article  CAS  Google Scholar 

  17. Ziegler T, Autschbach J (2005) Chem Rev 105:2695

    Article  CAS  Google Scholar 

  18. Bühl M, Kabrede H (2006) J Chem Theory Comput 2:1282

    Article  Google Scholar 

  19. Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804

    Article  CAS  Google Scholar 

  20. Sieffert N, Bühl M (2010) J Am Chem Soc 132:8056

    Article  CAS  Google Scholar 

  21. Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977

    Article  CAS  Google Scholar 

  22. Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133:12994

    Article  CAS  Google Scholar 

  23. Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133:15464

    Article  CAS  Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  27. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  28. Furche F, Perdew JP (2006) J Chem Phys 124:044103

    Article  Google Scholar 

  29. Wang H, Xie Y, King RB, Schaefer HF (2005) J Am Chem Soc 127:11646

    Article  CAS  Google Scholar 

  30. Wang H, Xie Y, King RB, Schaefer HF (2006) J Am Chem Soc 128:11376

    Article  CAS  Google Scholar 

  31. Dunning TH (1970) J Chem Phys 53:2823

    Article  CAS  Google Scholar 

  32. Huzinaga S (1965) J Chem Phys 42:1293

    Article  Google Scholar 

  33. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  34. Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2009) G09. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  36. Fischer EO, Jira R (1954) Z Naturforsch 9b:618

    CAS  Google Scholar 

  37. Piper TS, Cotton FA, Wilkinson G (1955) J Inorg Nucl Chem 1:165

    Article  Google Scholar 

  38. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48

    Article  CAS  Google Scholar 

  39. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729

    Article  CAS  Google Scholar 

  40. Wang H, Li R, King RB (2013) J Fluor Chem 153:121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the China Scholarship Council and hospitality of Center for Computational Quantum Chemistry of the University of Georgia, USA. We acknowledge financial support from the Fundamental Research Funds for the Central Universities (Grant SWJTU12CX084), the China National Science Foundation (Grant 11174237), the Sichuan Province, Applied Science and Technology Project (Grant 2013JY0035), the open research fund of the Key Laboratory of Advanced Scientific Computation, Xihua University (Grant: szjj2012-035), and the US National Science Foundation (Grant CHE-1057466).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Wang or R. Bruce King.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, H., Die, D. et al. The hapticity of octafluorocyclooctatetraene in its first-row mononuclear transition metal carbonyl complexes: effect of perfluorination. Transition Met Chem 39, 95–109 (2014). https://doi.org/10.1007/s11243-013-9778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9778-5

Keywords

Navigation