Skip to main content
Log in

Catalytic activity of an iron(III) Schiff base complex bound in a polymer resin

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

An iron(III)–ferrocene complex and its heterogeneous analogue bound in a polymer resin have been prepared and employed as catalysts for the oxidation of various organic substrates. Characterization of the heterogeneous and homogeneous complexes was done by SEM, EDAX, TGA, FT-IR, DRS-UV, and spectroscopy. The catalyst’s activity, stability, and reusability were investigated through industrially relevant oxidation reactions. The solid iron(III)–ferrocene Schiff base complex gave more effective results than the solid-supported ferrocene Schiff base ligand. The antimicrobial activities of the molecular complex and free ligand were studied for Gram-positive and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fredrich B, Gerhartz W (eds) (1985) W Ullmann’s encyclopedia of industrial chemistry. Weinheim, New York

    Google Scholar 

  2. Kumar R, Sithambaram S, Suib SL (2009) J Catal 262:304–313

    Article  CAS  Google Scholar 

  3. Sheldon RA, Kochi JK (1981) Metal catalyzed oxidation of organic compounds. Academic Press, New York

    Google Scholar 

  4. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932

    Article  CAS  Google Scholar 

  5. McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563–1602

    Article  CAS  Google Scholar 

  6. Blaser HU, Pugin B, Spindler F (2005) J Mol Catal A Chem 231:1–20

    Article  CAS  Google Scholar 

  7. Shulpin GB (2002) J Mol Catal A Chem 189:39–66

    Article  CAS  Google Scholar 

  8. Backvall JE (2004) Modern oxidation methods. Wiley, Weinheim 21

    Book  Google Scholar 

  9. Haines AH (1985) Methods for the oxidation of organic compounds. Academic Press, New York

    Google Scholar 

  10. Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Chem Rev 105:1603–1662

    Article  CAS  Google Scholar 

  11. Yudin AK (2006) Aziridines and epoxides in organic synthesis. Wiley, Weinheim 185

    Book  Google Scholar 

  12. Swern D (Ed) (1970) Organic peroxide. Wiley, New York, p 265

  13. Barf GA, Sheldon RA (1995) J Mol Catal A Chem 102:23–39

    Article  CAS  Google Scholar 

  14. Mukaiyama T, Yamada T (1995) Bull Chem Soc Jpn 68:17–35

    Article  CAS  Google Scholar 

  15. Frenanez I, Khiar N (2003) Chem Rev 103:3651–3706

    Article  Google Scholar 

  16. Ozanne-Beaudenon A, Quideau S (2006) Tetrahedron Lett 47:5869–5873

    Article  CAS  Google Scholar 

  17. Iranpoor N, Firouzabadi H, Pourali AR (2004) Synlett 2004(2):347–349

  18. Noyori R, Aoki M, Sato K (2003) Chem Commun 2003(16):1977–1986

  19. Blakemore PR, Burge MS (2007) J Am Chem Soc 129:3068–3069

    Article  CAS  Google Scholar 

  20. Egami H, Katsuki T (2007) J Am Chem Soc 129:8940–8941

    Article  CAS  Google Scholar 

  21. Islam SM, Roy AS, Mondal P, Tuhina K, Mobarak M, Mondal J (2012) Tetrahedron Lett 53:127–131

    Article  CAS  Google Scholar 

  22. Islam SM, Mobarok M, Mondal P, Roy AS, Salam N, Hossain D, Mondal S (2012) Transition Met Chem 37:97–107

    Article  CAS  Google Scholar 

  23. Gruenwald KR, Kirillov AM, Haukka M, Sanchiz J, Pombeiro AJL (2009) Dalton Trans 2009(12):2109–2120

  24. Sakthivel A, Dapurkar SE, Selvan P (2003) Appl Catal A Gen 246:283–293

    Article  CAS  Google Scholar 

  25. Dapurkar SE, Sakthivel A, Selvan P (2003) New J Chem 27:1184–1190

    Article  CAS  Google Scholar 

  26. Handzlik J, Ogonowski J, Stoch J, Mikołajczyk M (2005) Catal Lett 101:65–69

    Article  CAS  Google Scholar 

  27. Mureseanu M, Parvulescu V, Ene AR, Cioatera AN, Pasatoiu TD, Andruh M (2009) J Mater Sci 44:6795–6804

    Article  CAS  Google Scholar 

  28. Lei Z (2000) React Func Polym 43:139–143

    Article  CAS  Google Scholar 

  29. Islam M, Paul S, Roy AS, Mondal P (2013) J Inorg organometallic polymers and Materials 23:560–570

    Article  CAS  Google Scholar 

  30. Vogel AI (1989) Test book of practical organic chemistry, 5th edn. Longman, London

    Google Scholar 

  31. Islam M, Mondal P, Mukherjee S, Mobarak M, Roy AS, Mondal S, Sarkar S (2010) J Chem Technol Biotechnol 85:460–470

    Article  CAS  Google Scholar 

  32. Burri DR, Shaikh IR, Choi KM, Park SE (2007) Catal Comm 8:731–735

    Article  CAS  Google Scholar 

  33. Valodkar VB, Tembe GL, Ravindranathan M, Ram RN, Rama HS (2004) J Mol Catal A Chem 208:21–32

    Article  CAS  Google Scholar 

  34. Li L, Shi J, Yan J, Zhao X, Chen H (2004) Appl Catal A Gen 263:213–217

    Article  CAS  Google Scholar 

  35. Sallam SA, Orabi AS, El-Shetary BA, Lentz A (2002) Trans Met Chem 27:447–453

    Article  CAS  Google Scholar 

  36. Gnanasoundari VB, Natarajan K (2004) Trans Met Chem 29:511–515

    Article  CAS  Google Scholar 

  37. Rao SN, Munshi KN, Rao NN, Bhadbhade MM, Suresh E (1999) Polyhedron 18:2491–2497

    Article  CAS  Google Scholar 

  38. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  39. Daran JC, Jeannin Y, Martin LM (1980) Inorg Chem 19:2935–2940

    Article  CAS  Google Scholar 

  40. Antony R, Tembe GL, Ravindranathan M, Ram RN (2001) J Mol Catal A Chem 171:159–168

    Article  CAS  Google Scholar 

  41. Fernandes RR, Lasri J, Guedes da Silva MFC, da Silva JAL, da Silva JJRF, Pombeiro AJL (2011) Appl Catal A General 402:110–120

    Google Scholar 

  42. Smith JRL, Iamamoto Y, Vinhado FS (2006) J Mol Catal A Chem 252:23–30

    Article  Google Scholar 

  43. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic Press, New York

  44. Bilis G, Christoforidis KC (2010) Catal Today 157:101–106

    Article  CAS  Google Scholar 

  45. Mirkhani V, Moghadam M, Tangestaninejad S, Baltork IM, Rasouli N (2008) Catal Commun 9:2171–2174

    Article  CAS  Google Scholar 

  46. Ferrand Y, Daviaud R, Maux PL, Simonneaux G (2006) Tetrahedron Asymmetry 17:952–960

    Google Scholar 

  47. Dhakshinamoorthy A, Pitchumani K (2006) Tetrahedron 62:9911–9918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Council of Scientific and Industrial Research (CSIR) New Delhi, India, for funding. ASR acknowledges CSIR, New Delhi, India, for his senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Manirul Islam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, S.M., Paul, S., Roy, A.S. et al. Catalytic activity of an iron(III) Schiff base complex bound in a polymer resin. Transition Met Chem 38, 675–682 (2013). https://doi.org/10.1007/s11243-013-9736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9736-2

Keywords

Navigation