Skip to main content
Log in

Juxtaposition of the strong back-bonding carbonyl ligand and weak back-bonding acetonitrile ligand in binuclear iron complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The binuclear iron complexes (CH3CN)2Fe2(CO) n (n = 7, 6), containing both the strongly back-bonding CO ligand and the weakly back-bonding acetonitrile ligand, have been investigated by density functional theory. The acetonitrile ligands are always found to be terminal in such structures. Heptacarbonyl structures are found at similar energies, with both acetonitrile ligands bonded to the same iron atom or with each acetonitrile ligand bonded to a different iron atom. Various combinations of bridging and semibridging CO groups are found in these (CH3CN)2Fe2(CO)7 structures approaching triply (bridged + semibridged) structures for the structures with symmetrically distributed acetonitrile ligands. The latter structures thus resemble the well-established triply bridged structure for the related binary iron carbonyl Fe2(CO)9. For the hexacarbonyl (CH3CN)2Fe2(CO)6, both triplet unbridged structures and singlet doubly bridged structures are found. The triplet (CH3CN)2Fe2(CO)6 structures have slightly lower energies relative to the singlet structures.

Graphical abstract

The acetonitrile ligands in (CH3CN)2Fe2(CO) n (n = 7, 6) are always found to be terminal ligands. Various combinations of bridging and semibridging CO groups are found in these (CH3CN)2Fe2(CO)7 structures approaching triply (bridged + semibridged) structures for the structures with symmetrically distributed acetonitrile ligands. For the hexacarbonyl (CH3CN)2Fe2(CO)6, both triplet unbridged structures and singlet doubly bridged structures are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mond L, Langer C, Quinncke F (1890) J Chem Soc 57:749

    Article  CAS  Google Scholar 

  2. Calderazzo F (2005) In: King RB (ed) Encyclopedia of inorganic chemistry, vol 2. Wiley, Chichester, pp 764–781

    Google Scholar 

  3. Szilagyi RK, Frenking G (1997) Organometallics 126:4807

    Article  Google Scholar 

  4. Diefenbach A, Bickelhaupt FM, Frenking G (2000) J Am Chem Soc 122:6449

    Article  CAS  Google Scholar 

  5. Treichel PM (1973) Adv Organomet Chem 11:21

    Article  CAS  Google Scholar 

  6. Yamamoto Y (1980) Coord Chem Revs 32:193

    Article  CAS  Google Scholar 

  7. Singleton E, Oosthuizen HE (1983) Adv Organomet Chem 22:209

    Article  CAS  Google Scholar 

  8. Kharasch MS, Seyler RC, Mayo FR (1938) J Am Chem Soc 60:882

    Article  CAS  Google Scholar 

  9. Tate DP, Augl JM, Knipple WR (1962) Inorg Chem 1:433

    Article  CAS  Google Scholar 

  10. King RB, Fronzaglia A (1966) Inorg Chem 5:1837

    Article  CAS  Google Scholar 

  11. Koelle U (1978) J Organomet Chem 155:53

    Article  CAS  Google Scholar 

  12. Poliakoff M, Turner JJ (1971) J Chem Soc A 2403

  13. Fletcher SC, Poliakoff M, Turner JJ (1986) Inorg Chem 25:3597

    Article  CAS  Google Scholar 

  14. Fedrigo S, Haslett TL, Moskovits M (1996) J Am Chem Soc 118:5083

    Article  CAS  Google Scholar 

  15. Schubert EH, Sheline RK (1971) Inorg Chem 5:1071

    Article  Google Scholar 

  16. Wang J, Li G, Li Qs, Xie Y, King RB (2012) Polyhedron 47:165

    Article  CAS  Google Scholar 

  17. Ziegler T, Autschbach J (2005) Chem Rev 105:2695

    Article  CAS  Google Scholar 

  18. Bühl M, Kabrede HJ (2006) Chem Theory Comput 2:1282

    Article  Google Scholar 

  19. Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804

    Article  CAS  Google Scholar 

  20. Sieffert N, Bühl M (2010) J Am Chem Soc 132:8056

    Article  CAS  Google Scholar 

  21. Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977

    Article  CAS  Google Scholar 

  22. Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133:12994

    Article  CAS  Google Scholar 

  23. Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133:15464

    Article  CAS  Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  27. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  28. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48

    Article  CAS  Google Scholar 

  29. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729

    Article  CAS  Google Scholar 

  30. Dunning TH (1970) J Chem Phys 53:2823

    Article  CAS  Google Scholar 

  31. Dunning TH, Hay PT (1977) In: Schaefer HF (ed) Methods of electronic structure theory. Plenum, New York, pp 1–27

    Chapter  Google Scholar 

  32. Huzinaga SJ (1965) Chem Phys 42:1293

    Google Scholar 

  33. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  34. Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2004) Gaussian 03, revision D 01. Gaussian, Inc., Wallingford CT (see Supporting Information for details)

    Google Scholar 

  36. Papas BN, Schaefer HF (2006) J Mol Struct 768:275

    Google Scholar 

  37. Cotton FA, Troup JM (1974) J Chem Soc Dalton 800

  38. Caspar JV, Meyer TJ (1980) J Am Chem Soc 102:7794

    Article  CAS  Google Scholar 

  39. Hooker RH, Mahmoud KA, Rest AJ (1983) Chem Commun 1022

  40. Hepp AF, Blaha JP, Lewis C, Wrighton MS (1984) Organometallics 3:174

    Article  CAS  Google Scholar 

  41. Sunderlin LS, Wang D, Squires RR (1993) J Am Chem Soc 115:12060

    Article  CAS  Google Scholar 

  42. Jin R, Chen X, Du Q, Feng H, Xie Y, King RB, Schaefer HF (2012) Organometallics 31:5005

    Article  CAS  Google Scholar 

  43. Wang HY, Sun Z, Xie Y, King RB, Schaefer HF (2010) Eur J Inorg Chem 5161

  44. Silaghi-Dumitrescu I, Bitterwolf TE, King RB (2006) J Am Chem Soc 128:5342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research in China was supported by the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2012), the Research Fund for the Doctoral Program of Higher Education (20104407110007) and the National Natural Science Foundation of China (21273082). Research at the University of Georgia was supported by the US National Science Foundation (Grant CHE-1057466).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-shu Li or R. Bruce King.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Liu, L., Wang, J. et al. Juxtaposition of the strong back-bonding carbonyl ligand and weak back-bonding acetonitrile ligand in binuclear iron complexes. Transition Met Chem 38, 617–625 (2013). https://doi.org/10.1007/s11243-013-9729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9729-1

Keywords

Navigation