Skip to main content
Log in

Kinetic studies on H+-catalyzed aquation and hydrogen peroxide oxidation of tris-asparaginatochromium(III)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Tris-asparaginatochromium(III), [Cr(Asn)3]0 (where Asn forms a 5-membered chelate ring via amine nitrogen and α-carboxylate oxygen atoms) and its mono- and diaqua-derivatives were obtained, and their acid-catalyzed aquation was studied. The first reaction for [Cr(Asn)3]0 and [Cr(Asn)2(H2O)2]+ is the chelate ring opening at the Cr-NH2 bond, leading to metastable intermediates. Kinetics of these processes were studied spectrophotometrically in 0.1–1.0 M HClO4 at 303 and 333 K, respectively. A linear dependence of k obs on [H+], k obs = a + b[H+] was determined for both the complexes. Additionally, oxidation of chromium(III) to chromate(VI) by hydrogen peroxide was studied. The process proceeds through a chromium(V) intermediate, which is next transformed, in faster parallel steps into CrO4 2− and [Cr(O2)2]3− anions. The latter species, a chromium(V)-peroxo complex, is metastable under a large excess of H2O2. Kinetics of oxidation of [Cr(Asn)3]0 were studied at 298 K, at constant [OH], within 0.2–1.0 M H2O2 range. A linear dependence of k obs on H2O2 was established. A mechanism is proposed, where the rate-determining step is an inner sphere 2-electron transfer within a precursor chromium(III) complex with coordinated O2H anion of the [Cr(Asn)2(OH)(HO2)] formula. EPR results provided clear evidence for formation of a relatively stable tetrakis(η 2-peroxo)chromate(V) complex, [Cr(O2)4]3−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Mertz W (1993) J Nutr 123:626

    CAS  Google Scholar 

  2. Slesinski RS, Clarke JJ, San RHC, Gudi R (2005) Mutat Res 585:86

    Article  CAS  Google Scholar 

  3. Stallings D, Vincent JB (2006) CurrTopics Nutraceutical Res 4:89

    CAS  Google Scholar 

  4. Vincent JB (2010) Dalton Trans 39:3787

    Article  CAS  Google Scholar 

  5. Levina A, Codd R, Dillon CT, LayPA (2003) Chromium in biology: toxicology and nutritional aspects. In: Karlin KD (ed) Progress in inorganic chemistry, vol 51. Wiley, Hoboken, pp 145–250

    Google Scholar 

  6. Cooper JA, Blacwell LF, Buckley PD (1984) Inorganica Chim Acta 92:23

    Article  CAS  Google Scholar 

  7. Anderson RA, Polansky MM, Noella AB (2004) United States Patent US 6,689,383 B1, Feb 10, 2004

  8. Marai H, Kita E, Kiersikowska E, Kuchta S, Bajek A, Drewa T (2012) Transit Met Chem 37:337

    Article  CAS  Google Scholar 

  9. Kita E, Marai H, Muzioł T, Lenart K (2011) Transit Met Chem 36:35

    Article  CAS  Google Scholar 

  10. Sekizaki M (1979) Bull Chem Soc Jpn 52:403

    Article  CAS  Google Scholar 

  11. Stephens FS, Vagg RS, Williams PA (1977) Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 33:433

    Article  Google Scholar 

  12. Ono T, Shimanouchi H, Sasada Y, Sakurai T, Yamauchi O, Nakahara A (1979) Bull Chem Soc Jpn 52:2229

    Article  CAS  Google Scholar 

  13. Sekizaki M (1978) Bull Chem Soc Jpn 51:1991

    Article  CAS  Google Scholar 

  14. Flook RJ, Freeman HC, Moore CJ, Scudder ML (1973) Chem Commun 19:753

    Google Scholar 

  15. Carvalho JF (2004) Acta Crystallogr Sect E Struct Rep Online 60:m1428

    Article  Google Scholar 

  16. Bryan RF, Greene PT, Stokely PF, Wilson EW Jr (1971) Inorg Chem 10:1468

    Article  CAS  Google Scholar 

  17. Bailey JL (1962) Techniques in protein chemistry. Elsevier, Amsterdam, p 73

    Google Scholar 

  18. Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solutions. Marcel Dekker, New York

    Google Scholar 

  19. Mønsted L, Mønsted O (1985) Acta Chem Scand A 39:615

    Article  Google Scholar 

  20. Swalen JD, Ibers JA (1962) J Chem Phys 37:17

    Article  CAS  Google Scholar 

  21. Quane D, Bartlett B (1970) J Chem Phys 53:4404

    Article  CAS  Google Scholar 

  22. Dalal NS, Millar JM, Jagadeesh MS, Seehra MS (1981) J Chem Phys 74:1916

    Article  CAS  Google Scholar 

  23. Zhang L, Lay PA (1998) Inorg Chem 37:1729

    Article  CAS  Google Scholar 

  24. Impert O, Katafias A, Kita P, Woroniecka M (2008) Polish J Chem 82:1121

    CAS  Google Scholar 

  25. Brausam A, van Eldik R (2004) Inorg Chem 43:5351

    Article  CAS  Google Scholar 

  26. Kryatov SV, Rybak-Akimova EV (2006) Chem Rev 105:2175

    Article  Google Scholar 

  27. Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis, chapter 4, Weinheim Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiersikowska, E., Marai, H., Wrzeszcz, G. et al. Kinetic studies on H+-catalyzed aquation and hydrogen peroxide oxidation of tris-asparaginatochromium(III). Transition Met Chem 38, 603–610 (2013). https://doi.org/10.1007/s11243-013-9727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9727-3

Keywords

Navigation