Skip to main content
Log in

Kinetic studies of the oxidation of transition metal(II) malate complexes by peroxomonosulphate

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of malic acid by peroxomonosulphate (PMS) in the presence of Cu(II) (2.50 × 10−4–5.00 × 10−3 M), Co(II) (2.00 × 10−6–1.00 × 10−5 M) and Ni(II) (5.00 × 10−4–6.00 × 10−3 M) were studied in the pH range 4.05–5.89. The oxidation of Ni(II) malate follows simple first-order kinetics with respect to both [PMS] and [Ni(II)], while the oxidations of Cu(II) malate and Co(II) malate show autocatalysis. There is an appreciable induction period in the Cu(II) malate oxidation, while Co(II) malate oxidation follows a simple curve. The initial oxidation product for all three systems was identified as malonic semialdehyde. Alcohol quenching studies suggest that, even in the Co(II) malate-PMS system, no radical intermediates such as \( {\text{SO}}_{4}^{ - .} \) or \( {\text{OH}}{}^{.} \) are detected. The malonic semialdehyde intermediate may react with M(II) malates to give a hemiacetal, which may be more reactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sailani R, Sharma M, Pareek D, Khandelwal CL, Sharma PD (2012) Reac Kinet Mech Cat 105:249–259

    Article  CAS  Google Scholar 

  2. Eor S, Hwang J, Choi MG, Chang S-K (2011) Org Lett 13:370–373

    Article  CAS  Google Scholar 

  3. Chow TW-S, Wong EL-M, Guo Z, Liu Y, Huang J-S, Che C-M (2010) J Am Chem Soc 132:13229–13239

    Article  CAS  Google Scholar 

  4. Lente G, Kalmar J, Baranyai Z, Kun A, Kek I, Bajusz D, Takacs M, Veres L, Fabian I (2009) Inorg Chem 48:1763–1773

    Article  CAS  Google Scholar 

  5. Rivas FJ, Beltran FJ, Carvalho F, Alvarez PM (2005) Ind Eng Chem Res 44:749–758

    Article  CAS  Google Scholar 

  6. Bennet JE, Gilbert BC, Stell JK (1991) J Chem Soc Perkin Trans 2:1105–1110

    Google Scholar 

  7. Anipsitakis GP, Dionysiou DD (2004) Environ Sci Technol 38:3705–3712

    Article  CAS  Google Scholar 

  8. Spiro M (1979) Electrochim Acta 24:313–314

    Article  CAS  Google Scholar 

  9. Furholz U, Haim A (1987) Inorg Chem 26:3243–3248

    Article  Google Scholar 

  10. Eberson L (1982) Adv Phys Org Chem 18:79–185

    Article  CAS  Google Scholar 

  11. Thendral P, Shailaja S, Ramachandran MS (2007) Int J Chem Kinet 39:320–327

    Article  CAS  Google Scholar 

  12. Shailaja S, Ramachandran MS (2009) Int J Chem Kinet 41:160–167

    Article  CAS  Google Scholar 

  13. Andal P, Murugavelu M, Shailaja S, Ramachandran MS (2009) Int J Chem Kinet 41:449–454

    Article  CAS  Google Scholar 

  14. Shailaja S, Ramachandran MS (2011) Int J Chem Kinet 43:620–630

    Article  CAS  Google Scholar 

  15. Miltenberger K (2005) Hydroxycarboxylic acids, aliphatic; Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  16. Mayes PA (1983) Harper’s review of biochemistry, 19th edn. In: Martin Jr DW, Mayes PA, Rodwell VW (eds) LANGE medical publications: California, Chapter 14

  17. Maruthamuthu P, Neta P (1977) J Phys Chem 81:937–940

    Article  CAS  Google Scholar 

  18. Feigl F (1956) Spot tests in organic analysis. Elsevier, New York, p 347

    Google Scholar 

  19. Shailaja S, Ramachandran MS (2011) Int J Chem Kinet 43:47

    Article  Google Scholar 

  20. Robinson WG, Coon MJ (1963) In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 6. Academic Press, New York, p 549

    Google Scholar 

  21. Kalnitsky G, Tapley DF (1958) Biochem J 70:28–34

    CAS  Google Scholar 

  22. Hayaishi O, Nishizuka Y, Tatibana M, Takeshita M, Kuno S (1961) J Biol Chem 236:781–790

    CAS  Google Scholar 

  23. Muller JG, Hickerson RP, Perez RJ, Burrows CJ (1977) J Am Chem Soc 119:1501–1506

    Article  Google Scholar 

  24. Hickerson RP, Watkins-Sims CD, Burrows CJ, Atkins JF, Gesteland RF, Feldon B (1998) J Mol Biol 279:577–587

    Article  CAS  Google Scholar 

  25. Stemmler AJ, Burrows CJ (2001) J Biol Inorg Chem 6:100–106

    Article  CAS  Google Scholar 

  26. NIST critically selected stability constants of metal complexes: ver. 8.0

  27. Smith RM, Martell AE (1974–1977, 1982, 1989) Critical stability constants, vols 1–6. Plenum, New York

  28. Motekaitis RJ, Martell AE (1992) Inorg Chem 31:11–15

    Article  CAS  Google Scholar 

  29. Campi E, Ostacoli G, Meirone M, Saini G (1964) J Inorg Nucl Chem 26:553–564

    Article  CAS  Google Scholar 

  30. Rajan KS, Martell AE (1967) J Inorg Nucl Chem 29:463–471

    Article  CAS  Google Scholar 

  31. Manning PG, Monk CB (1961) Trans Farad Soc 57:1996–1999

    Article  CAS  Google Scholar 

  32. Ball DL, Edwards JO (1956) J Am Chem Soc 78:1125–1129

    Article  CAS  Google Scholar 

  33. Goodman JF, Robson P (1963) J Chem Soc 2871–2875

  34. Abrahamson HB, Rezvani AB, Brushmiller JG (1994) Inorg Chim Acta 226:117–127

    Article  CAS  Google Scholar 

  35. Stone AT, Godtfredson KL, Deng DL (1994) In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer, Dordrecht, pp 337–374

    Google Scholar 

  36. Ferdousi BN, Islam MM, Awad MI, Okajima T, Kitamara F, Ohsaka T (2006) Electrochemistry 74:606–608

    Article  CAS  Google Scholar 

  37. Ramachandran MS, Vivekanandam TS (1984) J Chem Soc Perkin Trans 2:1341–1344

    Google Scholar 

  38. Ramachandran MS, Vivekanandam TS, Raj RPMM (1984) J Chem Soc Perkin Trans 2:1345–1349

    Google Scholar 

  39. Lloyd D (1965) Biochem J 96:766–770

    CAS  Google Scholar 

  40. March J (1992) Advanced organic chemistry: reactions, mechanisms, and structure, 4th edn. Wiley-Interscience, Singapore, pp 889–891

    Google Scholar 

  41. Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17:1027–1284

    CAS  Google Scholar 

  42. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  43. Bratsch SG (1989) J Phys Chem Ref Data 18:1–21

    Article  CAS  Google Scholar 

  44. Thompson RC, Wieland P, Appelman EH (1979) Inorg Chem 18:1974–1977

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Murugavelu expresses his gratitude to UGC-RGNF, New Delhi for the financial assistance through a junior fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugian Shanmugam Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugavelu, M., Ramachandran, M.S. Kinetic studies of the oxidation of transition metal(II) malate complexes by peroxomonosulphate. Transition Met Chem 38, 225–234 (2013). https://doi.org/10.1007/s11243-012-9682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9682-4

Keywords

Navigation