Skip to main content
Log in

Preparation and NMR study of trimetallic complexes of platinum and tungsten bridged by 4-pyridylacetylide and a binuclear complex of rhodium and tungsten bridged by 2-(4-pyridyl)thiazole-4-carboxylate (PTC): structure of [(Ph3P)2Rh(H)2(μ-PTC)W(CO)4(P(4-MeC6H4)3)]

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The complexes [(dppp)Pt{(μ-C2C5H4N)W(CO)4(PR3)}2] (dppp = Ph2P(CH2)3PPh2; PR3 = PPh3 (1), P(4-XC6H4)3 (X = Me (2), OMe (3), F (4)) P(NMe2)3 (5)) were prepared from [(dppp)Pt(C2C5H4N)2] and cis-[W(CO)4(PR3)(CH3CN)] and were characterized by 1H, 13C, 15N, 31P, 183W and 195Pt NMR spectroscopy. The complex [(Ph3P)2Rh(H)2(μ-PTC)W(CO)4(P(4-MeC6H4)3)] (6) was prepared similarly, from [(Ph3P)2Rh(H)2(PTC)] (thiazole nitrogen and carboxylate oxygen attached to the metal) and cis-[W(CO)4(P(4-MeC6H4)3)(CH3CN)] and was characterized by NMR (1H, 13C, 15N, 31P, 103Rh and 183W) and by X-ray crystallography, which shows π–π interactions between the bridging pyridyl and a phenyl group from a phosphine on each metal. In complexes 15, there is little variation in the platinum chemical shift, indicating that electronic influences through the pyridylacetylide bridge are minimal.

Graphical Abstract

A bimetallic complex of rhodium and tungsten bridged by 2-(4-pyridyl)-thiazole-4-carboxylate is reported together with an NMR spectroscopic study of a series of trinuclear complexes of platinum and tungsten bridged by 4-pyridylacetylide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ziessel R, Hissler M, El-ghayoury A, Harriman A (1998) Coord Chem Rev 178–180:1251–1298

    Article  Google Scholar 

  2. Long NJ, Williams CK (2003) Angew Chem Int Ed 42:2586–2617

    Article  CAS  Google Scholar 

  3. Ceccon A, Santi S, Orian L, Bisello A (2004) Coord Chem Rev 248:683–724

    Article  CAS  Google Scholar 

  4. Wu I-Y, Lin JT, Luo J, Sun S-S, Li C-S, Lin K-J, Tsai C, Hsu C-C, Lin J-L (1997) Organometallics 16:2038–2048

    Article  CAS  Google Scholar 

  5. Kühn FE, Zuo J-L, Fabrizi de Biani F, Santos AM, Zhang Y, Zhao J, Sandulache A, Herdtweck E (2004) New J Chem 28:43–51

    Article  Google Scholar 

  6. Ge Q, Hor TSA (2008) Dalton Trans 2929–2936

  7. Ge Q, Dalton GT, Humphrey MG, Samoc M, Hor TSA (2009) Chem Asian J 4:998–1005

    Article  CAS  Google Scholar 

  8. Ge Q, Corkery TC, Humphrey MG, Samoc M, Hor TSA (2009) Dalton Trans 6192–6200

  9. Zuo J-L, Fabrizi de Biani F, Santos AM, Köhler K, Kühn FE (2003) Eur J Inorg Chem 449–452

  10. Whiteford JA, Lu CV, Stang PJ (1997) J Am Chem Soc 119:2524–2533

    Article  CAS  Google Scholar 

  11. Whiteford JA, Stang PJ, Huang SD (1998) Inorg Chem 37:5595–5601

    Article  CAS  Google Scholar 

  12. Müller C, Whiteford JA, Stang PJ (1998) J Am Chem Soc 120:9827–9837

    Article  Google Scholar 

  13. Packheiser R, Ecorchard P, Walfort B, Lang H (2008) J Organomet Chem 693:933–946

    Article  CAS  Google Scholar 

  14. Grosshenny V, Harriman A, Ziessel R (1995) Angew Chem Int Ed 34:2705–2708

    CAS  Google Scholar 

  15. Grosshenny V, Harriman A, Hissler M, Ziessel R (1996) Plat Met Rev 40:26–35

    CAS  Google Scholar 

  16. Grosshenny V, Harriman A, Hissler M, Ziessel R (1996) Plat Met Rev 40:72–77

    CAS  Google Scholar 

  17. Harriman A, Ziessel R (1996) J Chem Soc Chem Commun 1707–1716

  18. Chen Z-N, Fan Y, Ni J (2008) Dalton Trans 573–581

  19. Tong J, Yu S-Y, Li H (2012) J Chem Soc Chem Commun 48:5343–5345

    Article  CAS  Google Scholar 

  20. Halpin Y, Dini D, Younis Ahmed HM, Cassidy L, Browne WR, Vos JG (2010) Inorg Chem 49:2799–2807

    Article  CAS  Google Scholar 

  21. Janka M, Anderson GK, Rath NP (2004) Organometallics 23:4382–4390

    Article  CAS  Google Scholar 

  22. Adams RD, Perrin JL (1999) J Am Chem Soc 121:3984–3991

    Article  CAS  Google Scholar 

  23. Ahmad N, Levison JJ, Robinson SD, Uttley MF (1974) Inorg Synth 15:45–64

    Article  CAS  Google Scholar 

  24. Bax A, Griffey RH, Hawkins BL (1983) J Magn Reson 55:301–315

    CAS  Google Scholar 

  25. Carlton L, Emdin A, Lemmerer A, Fernandes MA (2008) Magn Reson Chem 46:S56–S62

    Article  Google Scholar 

  26. APEX2, Version 2.0-1 (2005) Bruker AXS Inc., Madison

  27. SAINT-NT, Version 6.0 (includes XPREP) (2005) Bruker AXS Inc., Madison, WI

  28. SHELXTL, Version 5.1 (1999) Bruker AXS Inc., Madison, WI

  29. Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  30. Tolman CA (1977) Chem Rev 77:313–348

    Article  CAS  Google Scholar 

  31. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  32. Carlton L, Mokoena LV, Fernandes MA (2013) Magn Reson Chem (in press)

Download references

Acknowledgments

We thank the University of the Witwatersrand and the NRF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Carlton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mampa, R.M., Fernandes, M.A. & Carlton, L. Preparation and NMR study of trimetallic complexes of platinum and tungsten bridged by 4-pyridylacetylide and a binuclear complex of rhodium and tungsten bridged by 2-(4-pyridyl)thiazole-4-carboxylate (PTC): structure of [(Ph3P)2Rh(H)2(μ-PTC)W(CO)4(P(4-MeC6H4)3)]. Transition Met Chem 38, 219–224 (2013). https://doi.org/10.1007/s11243-012-9681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9681-5

Keywords

Navigation