Transition Metal Chemistry

, Volume 38, Issue 2, pp 157–163 | Cite as

Synthesis, structures, and photoluminescence properties of three metal(II) coordination polymers derived from a flexible tripodal ligand and 2,6-pyridinedicarboxylic acid

  • Shi-Meng Wang
  • Ling Qian
  • Hong-Ye Bai
  • Wei-Qiang Fan
  • Chun-Bo Liu
  • Guang-Bo Che


Using a flexible tripodal ligand N,N′,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide and 2,6-pyridinedicarboxylic acid, three metal(II) complexes formulated as [Co(pydc)(L)]n (1), [Zn(pydc)(L)]n (2), {[Ni(pydc)(L)]·2H2O}n (3) (L = N,N′,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide, H2pydc = 2,6-pyridinedicarboxylic acid) have been hydrothermally synthesized and structurally characterized by physico-chemical and spectroscopic methods and single-crystal diffraction. In compounds 1 and 2, the L ligands acts as bridges to link the metal atoms into zigzag chain structures, which are further extended into three-dimensional (3D) metal–organic supramolecular frameworks by hydrogen bond interactions. In compound 3, the L ligands link three Ni(II) centers to form a two-dimensional (2D) hcb layered structure, and then, the adjacent nets interweave in parallel to generate a 3D structure by 2D → 3D interpenetration. The thermal stabilities of 13 and the luminescent properties of 2 in the solid state are also discussed.

Graphical Abstract

Three metal(II) coordination polymers, based on a flexible ligand N,N′,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide and 2,6-pyridinedicarboxylic acid, have been successfully synthesized under hydrothermal conditions, where thermal and photoluminescent properties were also investigated.


Coordination polymers Flexible ligands Luminescence 

Supplementary material

11243_2012_9673_MOESM1_ESM.doc (189 kb)
Supplementary material 1 (DOC 189 kb)


  1. 1.
    Xiao J, Liu BY, Wei G, Huang XC (2011) Inorg Chem 50:11032–11038CrossRefGoogle Scholar
  2. 2.
    Wang CY, Wilseck ZM, LaDuca RL (2011) Inorg Chem 50:8997–9003CrossRefGoogle Scholar
  3. 3.
    Du M, Wang XG, Zhang ZH, Tang LF, Zhao XJ (2006) Cryst Eng Comm 8:788–793CrossRefGoogle Scholar
  4. 4.
    Du M, Jiang XJ, Zhao XJ (2007) Inorg Chem 46:3984–3995CrossRefGoogle Scholar
  5. 5.
    Lu LH, Eychmuller A (2008) Acc Chem Res 41:244–253CrossRefGoogle Scholar
  6. 6.
    Kanegawa S, Karasawa S, Maeyama M, Nakano M, Koga N (2008) J Am Chem Soc 130:3079–3094CrossRefGoogle Scholar
  7. 7.
    Dybtsev DN, Chun H, Kim K (2004) Angew Chem Int Ed 43:5033–5036CrossRefGoogle Scholar
  8. 8.
    Liu PP, Cheng AL, Yue Q, Liu N, Sun WW, Gao EQ (2008) Cryst Growth Des 8:1668–1674CrossRefGoogle Scholar
  9. 9.
    Hu TL, Zou RQ, Li JR, Bu XH (2008) Dalton Trans 1302–1311Google Scholar
  10. 10.
    Hartshorn CM, Steel PJ (1997) Chem Commun 541–542Google Scholar
  11. 11.
    Sun WY, Fan J, Okamura T, Xie J, Yu KB, Ueyama N (2001) Chem Eur J 7:2557–2562CrossRefGoogle Scholar
  12. 12.
    Shuichi H, Tao Y, Motoo S, Mitsuhiko S (2002) J Am Chem Soc 124:14510–14511CrossRefGoogle Scholar
  13. 13.
    Shuichi H, Kaori H, Mitsuhiko S (2004) Angew Chem Int Ed 43:3814–3818CrossRefGoogle Scholar
  14. 14.
    Liu HK, Sun WY, Ma DJ, Yu KB, Tang WX (2000) Chem Commun 591–592Google Scholar
  15. 15.
    Yin XJ, Zhou XH, Gu ZG, Zuo JL, You XZ (2009) Inorg Chem Comm 12:548–551CrossRefGoogle Scholar
  16. 16.
    Gong Y, Li J, Qin JB, Wu T, Cao R, Li JH (2011) Cryst Growth Des 11:1662–1674CrossRefGoogle Scholar
  17. 17.
    Lin JD, Long XF, Lin P, Du SW (2010) Cryst Growth Des 10:146–157CrossRefGoogle Scholar
  18. 18.
    Wen LL, Lu ZD, Lin JG, Tian ZF, Zhu HZ, Meng QJ (2007) Cryst Growth Des 7:93–99CrossRefGoogle Scholar
  19. 19.
    Zhu QL, Sheng TL, Fu RB, Hu SM, Chen JS, Xiang SC, Shen CJ, Wu XT (2009) Cryst Growth Des 9:5128–5134CrossRefGoogle Scholar
  20. 20.
    Wang XJ, Liu YH, Xu CY, Guo QQ, Hou HW, Fan YT (2012) Cryst Growth Des 12:2435–2444CrossRefGoogle Scholar
  21. 21.
    Lv DY, Gao ZQ, Gu JZ, Ren R, Dou W (2011) Trans Met Chem 36:313–318CrossRefGoogle Scholar
  22. 22.
    Niu CY, Zheng XF, Wan XS, Kou CH (2011) Cryst Growth Des 11:2874–2888CrossRefGoogle Scholar
  23. 23.
    Palmans ARA, Vekemans JAJM, Meijer EW, Palmans ARA, Kooijman H, Spek AL (1997) Chem Commun 2247–2248Google Scholar
  24. 24.
    Sheldrick GM (2008) Acta Crystallogr Sect A: Found Crystallogr 64:112–122CrossRefGoogle Scholar
  25. 25.
    Ma LF, Wang LY, Hu JL, Wang YY, Yang GP (2009) Cryst Growth Des 9:5334–5342CrossRefGoogle Scholar
  26. 26.
    Gu JZ, Gao ZQ, Tang Y (2012) Cryst Growth Des 12:3312–3323CrossRefGoogle Scholar
  27. 27.
    Mu YJ, Han G, Li Z, Liu XT, Hou HW, Fan YT (2012) Cryst Growth Des 12:1193–1200CrossRefGoogle Scholar
  28. 28.
    Ohkoshi S, Tokoro H, Hozumi T, Zhang Y, Hashimoto K, Bord I, Rombaut G, Verelst M, Moulin CC, Villain F (2006) J Am Chem Soc 128:270–277CrossRefGoogle Scholar
  29. 29.
    Zheng XJ, Jin LP, Gao S, Lu SZ (2005) New J Chem 29:798–804CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Shi-Meng Wang
    • 1
  • Ling Qian
    • 1
  • Hong-Ye Bai
    • 1
  • Wei-Qiang Fan
    • 1
  • Chun-Bo Liu
    • 1
  • Guang-Bo Che
    • 1
  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations