Skip to main content
Log in

Electron transfer mechanism for the oxidation of ternary N-(2-acetamido)iminodiacetatocobaltate(II) complexes involving succinate and maleate as secondary ligands by periodate

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of the ternary complexes [CoII(ADA)(Su)(H2O)]2− and [CoII(ADA)(Ma)(H2O)]2− (ADA = N-(2-acetamido)iminodiacetate, Su = succinate and Ma = maleate) by periodate have been investigated spectrophotometrically at 580 nm under pseudo-first-order conditions in aqueous medium over 30–50 °C range, pH 3.72–4.99, and I = 0.2 mol dm−3. The kinetics of the oxidation of [CoII(ADA)(Su)(H2O)]2− obeyed the rate law d[CoIII]/dt = [CoII(ADA)(Su)(H2O)]2−[H5IO6] {k 4 K 5 + (k 5 K 6 K 2/[H+)}, and the kinetics oxidation of [CoII(ADA)(Ma)(H2O)]2− obeyed the rate law d[CoIII]/dt = k 1 K 2[CoII] T [IVII] T /{1 + ([H+]/K 7) + K 2[IVII] T }. The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of maleate complex, [CoII(ADA)(Ma)(OH)]3−, is the reactive species. The initial Co(III) products were slowly converted to the final products, fitting an inner-sphere mechanism. Thermodynamic activation parameters were calculated using the transition state theory equation. The initial cobalt(II) complexes were characterized by physicochemical and spectroscopic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bocarly RJ, Barton JK (1992) Inorg Chem 1:2827

    Article  Google Scholar 

  2. Farver O, Pecht I (1989) Coord Chem Rev 95:17

    Article  Google Scholar 

  3. Sigel H, Mccormick DB (1970) Accounts Res 3:201

    Article  CAS  Google Scholar 

  4. Norwak T, Mildvan AS, Kenyon GL (1973) Biochemistry 12:1960

    Google Scholar 

  5. Schray KJ, Mildvan AS (1972) J Biol Chem 247:2034

    CAS  Google Scholar 

  6. Robinson JD, Davis RL (1987) Biochim Biophys Acta 912:343

    Article  CAS  Google Scholar 

  7. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York, p 569

    Google Scholar 

  8. Symons MCR (1955) J Chem Soc 2794

  9. Galliford DJB, Ottaway JM (1972) Analyst 91:415

    Google Scholar 

  10. El-Ziri FR, Sulfab Y (1977) Inorg Chim Acta 25:15

    Article  Google Scholar 

  11. Ali IH, Sulfab Y (2011) Inter J Chem Kinet 43:563

    Article  CAS  Google Scholar 

  12. Abdel-Khalek AA (1989) Polyhedron 8:51

    Article  CAS  Google Scholar 

  13. Ewais HA, Nagdy MA, Abdel-Khalek AA (2012) J OxidCoumm 35:00

    Google Scholar 

  14. Abdel-Khalek AA, Sayyah SM, Ewais HA (1997) Trans Met Chem 22:557

    Article  CAS  Google Scholar 

  15. Khaled ESH (2007) Inorg React Mech 6:247

    CAS  Google Scholar 

  16. Ewais HA, Ahmed SA, Abdel-Khalek AA (2004) Inorg React Mech 5:125

    CAS  Google Scholar 

  17. Abdel-Hady AM (2000) Trans Met Chem 25:437

    Article  CAS  Google Scholar 

  18. Abdel-Khalek AA, Mohamed AA, Ewais HA (1999) Trans Met Chem 24:233

    Article  CAS  Google Scholar 

  19. Naik RM, Sarker J, Chaturvedi DD, Verma A, Singh SK (2003) Ind J Chem Sect A 42:1639

    Google Scholar 

  20. Naik RM, Srivastava A, Tiwari AK, Yadav SBS, Verma AK (2007) Iran Chem Soc 4:63

    Article  CAS  Google Scholar 

  21. Hussein MA, Abdel-Khalek AA, Sulfab Y (1983) J Chem Soc, Dalton Trans 839:317

    Article  Google Scholar 

  22. Abdel-Khalek AA, Khaled ESH, Mohamed RA (2007) J Coord Chem 61:152

    Article  Google Scholar 

  23. Ewais HA (2008) Inter J Chem Kinet 40:103

    Article  CAS  Google Scholar 

  24. Ewais HA (2009) J Coord Chem 62:940

    Article  CAS  Google Scholar 

  25. Vogel AI (1961) Textbook of quantitative inorganic analysis, 3rd edn. Longmans, London, p 443

    Google Scholar 

  26. Hadinec I, Jensovsky L, Linek A, Synecek V (1960) Naturwiss 47:377

    Article  CAS  Google Scholar 

  27. Ray P (1957) Inorg Synth 5:201

    Article  CAS  Google Scholar 

  28. Crouthamel CE, Hayes AM, Martin DS (1951) J Am Chem Soc Jpn 73:82

    Article  CAS  Google Scholar 

  29. Ewais HA, Habib MA, Elroby SA (2010) Trans Met Chem 35:73

    Article  CAS  Google Scholar 

  30. Ewais HA, Shehata MR, Nagdy MA, Abdel-Khalek AA (2010) Inorg Chem Indian J 5:2

    Google Scholar 

  31. Weaver MJ, Yee EL (1980) Inorg Chem 19:1936

    Article  CAS  Google Scholar 

  32. Mcardle JV, Coyle CL, Gray HB, Yoneda CS, Howerda RA (1977) J Am Chem Soc 99:2483

    Article  CAS  Google Scholar 

  33. Holwerda RA, Clemmer JD (1979) Bioinorg Chem 11:7

    CAS  Google Scholar 

  34. Wherland S, Gray HB (1977) In: Dolphin D (ed) Biological aspects of inorganic chemistry. Wiley, New York, p 189

    Google Scholar 

  35. Bowden AC (2002) J Biosci 27:121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Ewais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewais, H.A., Nagdy, M.A.M. & Abdel-Khalek, A.A. Electron transfer mechanism for the oxidation of ternary N-(2-acetamido)iminodiacetatocobaltate(II) complexes involving succinate and maleate as secondary ligands by periodate. Transition Met Chem 37, 525–533 (2012). https://doi.org/10.1007/s11243-012-9618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9618-z

Keywords

Navigation