Skip to main content
Log in

Studies on outer-sphere electron transfer reactions of surfactant–cobalt(III) complexes with iron(II) in liposome (dipalmitoylphosphotidylcholine) vesicles

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The effect of unilamellar vesicles of dipalmitoylphosphotidylcholine (DPPC), both below and above the phase transfer region, on the second-order rate constants for outer-sphere electron transfer between Fe2+ and the surfactant–cobalt(III) complexes, cis-[Co(en)2(C12H25NH2)2]3+ and cis-[Co(trien)(C12H25NH2)2]3+ (en = ethylenediamine, trien = triethylenetetramine, C12H25NH2 = dodecylamine) was studied by UV–Vis absorption spectroscopy. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC. It is concluded that below the phase transition temperature, there is an accumulation of surfactant–cobalt(III) complexes at the interior of the vesicle membrane through hydrophobic effects, and above the phase transition temperature the surfactant–cobalt(III) complex is released from the interior to the exterior surface of the vesicle. Through isokinetic plots, we have established that the mechanism of the reaction does not alter during the phase transition of DPPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babich OA, Gould ES (2002) Electron transfer. Part 148. Reactions of corrin-bound cobalt(III) with s2 metal-ion reducing centers. Inorg Chim Acta 336:80–86

    Article  CAS  Google Scholar 

  2. Hopfield JJ, Onuchic JN, Beratan DN (1989) Electronic shift register memory based on molecular electron-transfer reactions. J Phys Chem 93:6350–6357

    Article  CAS  Google Scholar 

  3. Szacilowski K (2004) Molecular logic gates based on pentacyanoferrate complexes: from simple gates to three-dimensional logic systems. Eur J 10:2520–2528

    Article  CAS  Google Scholar 

  4. Andersson M, Linke M, Chambron JC, Davidsson J, Heitz V, Hammarström L, Sauvage JP (2002) Long-range electron transfer in porphyrin containing [2]-rotaxanes: tuning the rate by metal cation coordination. J Am Chem Soc 124:4347–4362

    Article  CAS  Google Scholar 

  5. Gaswick D, Haim A (1971) Direct measurement, of a first-order rate constant for an elementary electron transfer step. J Am Chem Soc 93:7347–7348

    Article  CAS  Google Scholar 

  6. Weidemaier K, Tavernier HL, Fayer MD (1997) Photoinduced electron transfer on the surfaces of micelles. J Phys Chem B 101:9352–9361

    Article  CAS  Google Scholar 

  7. Tavernier HL, Barzykin AV, Tachiya M, Fayer MD (1998) Solvent reorganization energy and free energy change for donor/acceptor electron transfer at micelle surfaces: theory and experiment. J Phys Chem B 102:6078–6088

    Article  CAS  Google Scholar 

  8. Hammarström L, Norrby T, Stenhagen G, Mårtensson J, Åkermark B, Almgren M (1997) Two-dimensional emission quenching and charge separation using a Ru(II)-photo sensitizer assembled with membrane-bound acceptors. J Phys Chem B 101:7494–7504

    Article  Google Scholar 

  9. Wang XL, Chao H et al (2004) DNA interactions of cobalt(III) mixed-polypyridyl complexes containing asymmetric ligands. J Inorg Biochem 98:1143–1150

    Article  CAS  Google Scholar 

  10. Ji LN, Zou XH, Liu JG (2001) Shape and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA C. Coord Chem Rev 216:513–536

    Article  Google Scholar 

  11. Srinivasan S, Annaraj J, Athappan PR (2005) Spectral and redox studies on mixed ligand complexes of cobalt(III) phenanthroline/bipyridyl and benzoylhydrazone their DNA binding and antimicrobial activity. J Inorg Biochem 99:876–882

    Article  CAS  Google Scholar 

  12. Prado-Gotor R, Jiménez R, López P, Pérez P, Gómez-Herrera C, Sánchez F (1998) Micellar effects upon the reaction between acetonitrile pentacyanoferrate(II) and bis(ethylenediammine)(2- pyrazinecarboxylato)cobalt(III). Langmuir 14:1539–1543

    Article  CAS  Google Scholar 

  13. Prado-Gotor R, Jiménez R, Pérez-Tejeda P, López-López M, Sánchez F (2001) Electron transfer reactions in micellar systems: Separation of the true (unimolecular) electron transfer rate constant in its components. Chem Phys 263:139–148

    Article  CAS  Google Scholar 

  14. López-Cornejo P, Prado-Gotor R, Gómez-Herrera C, Jiménez R, Sánchez F (2003) Influence of the charge and concentration of Co reactants on the apparent binding constant of the reactant to micelles. Langmuir 19:5991–5995

    Article  Google Scholar 

  15. De la Vega R, Perez-Tejeda P, Lopez-Cornejo P, Sanchez F (2004) Kinetic study of the oxidation of [Ru(NH3)5pz]2+ by [Co(C2O4)3]3− in AOT—Oil—water microemulsions and in CTACl micellar solutions. Langmuir 20:1558–1563

    Article  Google Scholar 

  16. López-Cornejo P, Pérez P, García F, de la Vega R, Sánchez F (2002) Use of the Pseudophase model in the interpretation of reactivity under restricted geometry conditions. An application to the study of the [Ru(NH3)5pz]2+ + S2O8 2− electron-transfer reaction in different micro heterogeneous systems. J Am Chem Soc 124:5154–5164

    Article  Google Scholar 

  17. López-Cornejo P, Prado-Gotor R, García-Santana A, Pérez F, Sánchez F (2003) Comparative study of micellar and DNA effects on the reaction [Ru(NH3)5py]2+ + S2O8 2−. Langmuir 19:3185–3189

    Article  Google Scholar 

  18. Papahadjopoulos D (1978) In liposomes and their uses in biology and medicine. Ann NY Acad Sci 308:1–462

    Article  Google Scholar 

  19. Brown BS, Biological Membranes, School of Biological Sciences, 2.205 Stop ford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK

  20. Paternostre MT, Roux M, Rigaud JL (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27:2668–2677

    Article  CAS  Google Scholar 

  21. Almog S, Litman BJ, Wimley W, Cohen J, Wachtel EJ, Barenholz Y, Ben-Shaul A, Lichtenberg D (1990) States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry 29:4582–4592

    Article  CAS  Google Scholar 

  22. Edwards K, Almgren MJ (1991) Solubilization of lecithin vesicles by C12E8: structural transitions and temperature effects. Colloid Interface Sci 147:1–21

    Article  CAS  Google Scholar 

  23. Inoue T, Yamahata T, Shimozawa RJ (1992) Systematic study on the solubilization of phospholipid vesicles by various surfactants. Colloid Interface Sci 149:345–358

    Article  CAS  Google Scholar 

  24. Arumugam MN, Santhakumar K, Arunachalam S (2003) Synthesis and characterization of cationic surfactant cobalt(III) complexes containing 3,8-dimethyl-5,6-benzo-4,7-diaza deca-3,7-diene-2,9-dione dioxime. Asian J Chem 15:191–196

    Google Scholar 

  25. Arumugam MN, Arunachalam S (1997) Synthesis and characterization of some surfactant cobalt(III) complexes. Indian J Chem 36A:84–87

    CAS  Google Scholar 

  26. Santhakumar K, Kumaraguru N, Arunachalam S, Arumugam MN (2006) Studies on cobalt(III) metallosurfactants. Kinetics and mechanism of reduction of cobalt(III) by iron(II) in aqueous acid medium. Trans Met Chem 31:62–70

    Google Scholar 

  27. Santhakumar K, Kumaraguru N, Arunachalam S, Arumugam MN (2006) Kinetics of Fe(II) reduction of cis-halogeno(dodecylamine) bis(ethylenediamine)–cobalt(III) complex ion in aqueous solutions. Int J Chem Kinet 38:98–105

    Article  CAS  Google Scholar 

  28. Kumaraguru N, Santhakumar K, Arunachalam S, Arumugam MN (2006) Synthesis, characterization and micellization behaviour of some surface active mixed-ligand complexes of cobalt(III). Polyhedron 25:3253–3260

    Google Scholar 

  29. Cannon RD, Gardiner JJ (1972) kinetics of electron transfer: the reaction of acetato penta-are mine cobalt(III) with N-methyl iminodiacetato iron(II). Dalton Trans 89:887–890

    Google Scholar 

  30. Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019

    Article  CAS  Google Scholar 

  31. Watwe RM, Bellare JR (1995) Manufacture of liposomes: a review. Curr Sci 68:715–724

    CAS  Google Scholar 

  32. Kitson RE (1950) Simultaneous spectrophotometric determination of cobalt, copper, and iron. Anal Chem 22:664–667

    Article  CAS  Google Scholar 

  33. Linck RG (1970) Non bridging ligand and temperature effect on the rate of reduction of bromocobalt (III) complexes by iron (II). Inorg Chem 9:2529–2533

    Article  CAS  Google Scholar 

  34. Zwickel A, Taube H (1961) Kinetics of some electron transfer reactions of cobalt(III). J Am Chem Soc 83:793–796

    Article  CAS  Google Scholar 

  35. Bansch B, Martinez P, Van Eldick R (1992) Experimental and theoretical determination of thermodynamic and kinetic parameters for nonsymmetrical outersphere electron-transfer reactions. The reduction of a hexaaminecobalt(III) complex by vanadium(II) in acidic aqueous solution. J Phys Chem 96:234–238

    Article  Google Scholar 

  36. Sasikala A, Arunachalam S (2009) Studies on outer-sphere electron transfer between iron(II) and some surfactant–cobalt(III) complexes in micelles as well as in β-cyclodextrin. Colloids Surf A Physicochem Eng Asp 335:98–102

    Article  CAS  Google Scholar 

  37. New RRC 1990 Liposomes a practical approach, Oxford University Press, London, and references there in

  38. Subuddhi U, Mishra AK (2006) Prototropism of 1-hydroxypyrene in liposome suspensions: implications towards fluorescence probing of lipid bilayers in alkaline medium. Photochem Photobiol Sci 5:283–290

    Article  CAS  Google Scholar 

  39. Leonenko ZV, Finot E, Ma H, Dahms TES, Cramb DT (2004) Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys J 86:3783–3793

    Article  CAS  Google Scholar 

  40. Tumuli MS, Fondler JH (1981) Aspects of artificial photosynthesis. Photosensitized electron transfer across bilayers, charge separation, and hydrogen production in anionic surfactant vesicles. J Am Chem Soc 103:2507–2513

    Article  Google Scholar 

  41. Miyashita O, Wolynes PG, Onuchic JN (2005) Simple energy landscape model for the kinetics of functional transitions in proteins. J Phys Chem B 109:1959–1969

    Article  CAS  Google Scholar 

  42. Atkins P, Paula JD (2002) Physical chemistry. Oxford University Press, New York

    Google Scholar 

  43. Rajaram J, Kuriacose JC (1993) Kinetics and mechanism of chemical transformations. Macmillan India Limited, Madras

    Google Scholar 

Download references

Acknowledgments

We are grateful to the UGC-SAP & COSIST and DST-FIST programmes of the Department of Chemistry, Bharathidasan University, and University Research Fellowship sanctioned to one of the authors, K. Nagaraj, by Bharathidasan University. Financial assistance from the CSIR (Grant No. 01(2461)/11/EMR-II) and DST (Grant No. SR/S1/IC-13/2009) sanctioned to S. Arunachalam is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaralingam Arunachalam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraj, K., Arunachalam, S. Studies on outer-sphere electron transfer reactions of surfactant–cobalt(III) complexes with iron(II) in liposome (dipalmitoylphosphotidylcholine) vesicles. Transition Met Chem 37, 423–429 (2012). https://doi.org/10.1007/s11243-012-9605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9605-4

Keywords

Navigation