Skip to main content

Photodynamic activity of a nickel diimine complex and its interaction with DNA

Abstract

Employing 1,3-diphenylisobenzofuran as a probe, the photodynamic activity of a nickel diimine complex, bis(o-diiminobenzosemiquinonato)nickel(II), in red light has been studied by fluorescence spectra. These results show that the nickel complex can generate singlet oxygen efficiently after irradiation in red light. The interaction of the metal complex with DNA has also been studied by electronic absorption spectra, fluorescence spectra and viscosity measurements. The electronic spectra of the metal complex exhibit dramatic hypochromism on interaction with DNA. Scatchard plot analyses indicate that the metal complex can competitively inhibit the binding between DNA and ethidium bromide. Viscosity experiments show that the binding of the metal complex increases the relative viscosity of DNA. These results suggest that the photoactive nickel diimine complex may interact with DNA by intercalation binding mode. Potential applications of the complex in photodynamic therapy are discussed.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Levy JG, Obochi M (1996) Photochem Photobiol 64:737–739

    Article  CAS  Google Scholar 

  2. Bonnett R (1995) Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  3. Szacilowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Chem Rev 105:2647–2694

    Article  CAS  Google Scholar 

  4. Schatzschneider U (2010) Eur J Inorg Chem 2010:1451–1467

    Article  Google Scholar 

  5. Farrer NJ, Salassa L, Sadler PJ (2009) Dalton Trans 38:10690–10701

    Article  Google Scholar 

  6. Sasmal PK, Saha S, Majumdar R, Dighe RR, Chakravarty AR (2010) Inorg Chem 49:849–859

    Article  CAS  Google Scholar 

  7. Saha S, Majumdar R, Roy M, Dighe RR, Chakravarty AR (2009) Inorg Chem 48:2652–2663

    Article  CAS  Google Scholar 

  8. Patra AK, Bhowmick T, Roy S, Ramakumar S, Chakravarty AR (2009) Inorg Chem 48:2932–2943

    Article  CAS  Google Scholar 

  9. Weinstein JA, Tierney MT, Davies ES, Base K, Robeiro AA, Grinstaff MW (2006) Inorg Chem 45:4544–4555

    Article  CAS  Google Scholar 

  10. Adams CJ, Fey N, Weinstein JA (2006) Inorg Chem 45:6105–6107

    Article  CAS  Google Scholar 

  11. Shavaleev NM, Adams H, Best J, Edge R, Navaratnam S, Weinstein JA (2006) Inorg Chem 45:9410–9415

    Article  CAS  Google Scholar 

  12. Lu W, Vicic DA, Barton JK (2005) Inorg Chem 44:7970–7980

    Article  CAS  Google Scholar 

  13. Herebian D, Bothe E, Neese F, Weyhermueller T, Wieghardt K (2003) J Am Chem Soc 125:9116–9128

    Article  CAS  Google Scholar 

  14. Stubbe J, van der Donks W (1998) Chem Rev 98:705–762

    Article  CAS  Google Scholar 

  15. Fukui H, Kishi R, Minami T, Nagai H, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2008) J Phys Chem A 112:8423–8429

    Article  CAS  Google Scholar 

  16. Noro S, Chang HC, Takenobu T, Murayama Y, Kanbara T, Aoyama T, Sassa T, Wada T, Tanaka D, Kitagawa S, Iwasa Y, Akutagawa T, Nakamura T (2005) J Am Chem Soc 127:10012–10013

    Article  CAS  Google Scholar 

  17. Zhang Z, Dong X (2009) Biometals 22:283–288

    Article  CAS  Google Scholar 

  18. Balch AL, Holm RH (1966) J Am Chem Soc 88:5201–5209

    Article  CAS  Google Scholar 

  19. Hall GS, Soderberg RH (1968) Inorg Chem 7:2300–2303

    Article  CAS  Google Scholar 

  20. Vogler A, Kunkley H (1980) Angew Chem Int Ed Engl 19:221–222

    Article  Google Scholar 

  21. Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Inorg Chem 41:4179–4193

    Article  CAS  Google Scholar 

  22. Marmur J (1961) J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  23. Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) J Am Chem Soc 108:2081–2088

    Article  CAS  Google Scholar 

  24. Young RH, Wehrly K, Martin RL (1971) J Am Chem Soc 93:5774–5779

    Article  CAS  Google Scholar 

  25. Ouannes C, Wilson T (1968) J Am Chem Soc 90:6527–6528

    Article  CAS  Google Scholar 

  26. Fernandez JM, Bilgin MD, Grossweiner LI (1997) J Photochem Photobiol, B 37:131–140

    Article  CAS  Google Scholar 

  27. Wolfe A, Shimer GH Jr, Meehan T (1987) Biochemistry 26:6392–6396

    Article  CAS  Google Scholar 

  28. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  29. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319–9324

    Article  CAS  Google Scholar 

  30. Long EC, Barton JK (1990) Acc Chem Res 23:273–279

    Article  Google Scholar 

  31. Lepecq J-B, Paoletti C (1967) J Mol Biol 27:87–106

    Article  CAS  Google Scholar 

  32. Palmer BD, Wilson WR, Pullen SM, Denny WA (1990) J Med Chem 33:112–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Natural Science Foundation of Shanxi Province for financial support (No. 20041012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Z., Wang, S. & Dong, X. Photodynamic activity of a nickel diimine complex and its interaction with DNA. Transition Met Chem 37, 379–383 (2012). https://doi.org/10.1007/s11243-012-9599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9599-y

Keywords

  • Methylene Blue
  • Singlet Oxygen
  • Ethidium Bromide
  • DABCO
  • Scatchard Plot