Skip to main content

Advertisement

Log in

Redox active metal-induced oxidative stress in biological systems

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A number of studies performed on biological systems have shown that redox-active metals such as iron and copper as well as other transition metals can undergo redox cycling reactions and produce reactive free radicals termed also reactive oxygen species (ROS) or reactive nitrogen species (RNS). The most representative examples of ROS and RNS are the superoxide anion radical and nitric oxide, respectively, both playing a dual role in biological systems. At low/moderate concentrations of ROS and RNS, they can be involved in many physiological roles such as defense against infectious agents, involvement in a number of cellular signaling pathways and other important biological processes. On the other hand, at high concentrations, ROS and RNS can be important mediators of damage to biomolecules involving DNA, membrane lipids, and proteins. One of the most damaging ROS occurring in biological systems is the hydroxyl radical formed via the decomposition of hydrogen peroxide catalyzed by traces of iron, copper and other metals (the Fenton reaction). The hydroxyl radical is known to react with the DNA molecule, forming 8-OH-Guanine adduct, which is a good biomarker of oxidative stress of an organism and a potential biomarker of carcinogenesis. This review discusses the role of iron and copper in uncontrolled formation of ROS leading to various human diseases such as cancer, cardiovascular disease, and neurological disorders (Alzheimer’s disease and Parkinson’s disease). A discussion is devoted to the various protective antioxidant networks against the deleterious action of free radicals. Metal-chelation therapy, which is a modern pharmacotherapy used to chelate redox-active metals and remove toxic metals from living systems to avoid metal poisoning, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  2. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  CAS  Google Scholar 

  3. Bertini I, Cavallaro G (2008) J Biol Inorg Chem 13:3–14

    Article  CAS  Google Scholar 

  4. Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  5. Buettner GR (1993) Arch Biochem Biophys 300:535–543

    Article  CAS  Google Scholar 

  6. Prousek J (2007) Pure Appl Chem 79:2325–2338

    Article  CAS  Google Scholar 

  7. Liochev SI, Fridovich I (2002) Redox Rep 7:55–57

    Article  CAS  Google Scholar 

  8. Kell DB (2010) Arch Toxicol 84:825–889

    Article  CAS  Google Scholar 

  9. Kell DB (2009) BMC Med Genomics 2:2

    Article  Google Scholar 

  10. Jomova K, Valko M (2011) Toxicology 283:65–87

    Article  CAS  Google Scholar 

  11. Jomova K, Valko M (2011) Curr Pharm Des 17:3460–3473

    Article  CAS  Google Scholar 

  12. Schafer FQ, Buettner GR (2001) Free Radic Biol Med 30:1191–1212

    Article  CAS  Google Scholar 

  13. Liochev SI, Fridovich I (1994) Free Radic Biol Med 16:29–33

    Article  CAS  Google Scholar 

  14. Kakhlon O, Cabantchik ZI (2002) Free Radic Biol Med 33:1037–1046

    Article  CAS  Google Scholar 

  15. Gaetke LM, Chow CK (2003) Toxicology 189:147–163

    Article  CAS  Google Scholar 

  16. Kuo YM, Zhou B, Cosco D, Gitschier J (2001) Proc Natl Acad Sci USA 98:6836–6841

    Article  CAS  Google Scholar 

  17. Cadet J, Douki T, Ravanat JL (2011) Mutat Res 711:3–12

    Article  CAS  Google Scholar 

  18. Cai X, Pan N, Zou G (2007) Biometals 20:1–11

    Article  CAS  Google Scholar 

  19. Udenfriend S, Clark CT, Axelrod J, Brodie BB (1954) J Biol Chem 208:731–739

    CAS  Google Scholar 

  20. Suh J, Zhu BZ, Frei B (2003) Free Radic Biol Med 34:1306–1314

    Article  CAS  Google Scholar 

  21. Shigenaga MK, Gimeno CJ, Ames BN (1989) Proc Natl Acad Sci USA 86:9697–9701

    Article  CAS  Google Scholar 

  22. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  23. Stadtman ER (2004) Curr Med Chem 11:1105–1112

    CAS  Google Scholar 

  24. Stoltzfus R (2001) J Nutr 131:565S–567S

    CAS  Google Scholar 

  25. Toyokuni S (1996) Free Radic Biol Med 20:553–566

    Article  CAS  Google Scholar 

  26. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

  27. LaMarca BD, Gilbert J, Granger JP (2008) Hypertension 51:982–988

    Article  CAS  Google Scholar 

  28. Marnett LJ (1999) Mutat Res 424:83–95

    Article  CAS  Google Scholar 

  29. Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga-Koda L, Sulkowska M (2005) World J Gastroenterol 11:403–406

    CAS  Google Scholar 

  30. Valko M, Morris H, Mazúr M, Rapta P, Bilton RF (2001) Biochim Biophys Acta 1527:161–166

    Article  CAS  Google Scholar 

  31. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Mol Cell Biochem 345:91–104

    Article  CAS  Google Scholar 

  32. Zhu X, Castellani RJ, Moreira PI, Aliev G, Shenk JC, Siedlak SL, Harris PL, Fujioka H, Sayre LM, Szweda PA, Szweda LI, Smith MA, Perry G (2012) Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2011.11.004

  33. Bush AI (2003) Trends Neurosci 26:207–214

    Article  CAS  Google Scholar 

  34. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) J Struct Biol 130:184–208

    Article  CAS  Google Scholar 

  35. Butterfield DA, Sultana R (2011) J Amino Acids (article ID 198430)

  36. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    Article  CAS  Google Scholar 

  37. Jenner P (2003) Ann Neurol 53:S26–S36

    Article  CAS  Google Scholar 

  38. Chinta SJ, Andersen JK (2008) Biochim Biophys Acta 1780:1362–1367

    Article  CAS  Google Scholar 

  39. Andersen JK (2004) Nature Med 10:S18–S25

    Article  Google Scholar 

  40. Bamonti F, Fulgenzi A, Novembrino C, Ferrero ME (2011) Biometals 24:1093–1098

    Article  CAS  Google Scholar 

  41. Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M, Popelova O, Kalinowski DS, Kovarikova P, Vavrova K, Richardson DR, Simunek T (2010) Chem Res Toxicol 23:1105–1114

    Article  CAS  Google Scholar 

  42. Dairam A, Fogel R, Daya S, Limson JL (2008) J Agric Food Chem 56:3350–3356

    Article  CAS  Google Scholar 

  43. Kalinowski DS, Richardson DR (2007) Chem Res Toxicol 20:715–720

    Article  CAS  Google Scholar 

  44. Welch KD, Davis TZ, Van Eden ME, Aust SD (2002) Free Radic Biol Med 32:577–583

    Article  CAS  Google Scholar 

  45. Braun V, Endriss F (2007) Biometals 20:219–231

    Article  CAS  Google Scholar 

  46. Le CT, Hollaar L, Van der Valk EJ, Van der Laarse A (1994) J Mol Cell Cardiol 26:877–887

    Article  CAS  Google Scholar 

  47. Bush AI (2002) Neurobiol Aging 23:1031–1038

    Article  CAS  Google Scholar 

  48. Horwitz LD, Sherman NA, Kong YN (1998) Proc Natl Acad Sci 95:5263–5268

    Article  CAS  Google Scholar 

  49. De Vries B, Walter SJ, Von Bonsdorff L (2004) Transplantation 77:669–675

    Article  Google Scholar 

  50. Kontoghiorghes GJ (2006) Hemoglobin 30:183–200

    Article  CAS  Google Scholar 

  51. Wang T, Guo Z (2006) Curr Med Chem 13:525–537

    Article  CAS  Google Scholar 

  52. Khan G, Merajver S (2009) Expert Opin Investig Drugs 18:541–548

    Article  CAS  Google Scholar 

  53. Gupte A, Mumper RJ (2009) Cancer Treat Rev 35:32–46

    Article  CAS  Google Scholar 

  54. Hyman LM, Stephenson CJ, Dickens MG, Shimizu KD, Franz KJ (2010) Dalton Trans 39:568–576

    Google Scholar 

  55. Pierre JL, Baret P, Serratrice G (2003) Curr Med Chem 10:1077–1084

    Article  CAS  Google Scholar 

  56. Bush AI (2008) J Alzheimers Dis 15:223–240

    CAS  Google Scholar 

  57. Miklos D, Segla P, Palicova M, Kopcova M, Melnik M, Valko M, Glowiak T, Korabik M, Mrozinski J (2001) Polyhedron 20:1867–1874

    Article  CAS  Google Scholar 

  58. Moncol J, Kalinakova B, Svorec J, Kleinova M, Koman M, Hudecova D, Melnik M, Mazur M, Valko M (2004) Inorg Chim Acta 357:3211–3222

    Article  CAS  Google Scholar 

  59. Shimada H, Takahashi M, Shimada A, Okawara T, Yasutake A, Imamura Y, Kiyozumi M (2005) Toxicol Appl Pharmacol 202:59–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Grant Agency (VEGA Projects #1/0856/11 and #1/0289/12) and Research and Development Agency of the Slovak Republic (Contracts APVV-0202-10 and APVV-0339-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaudia Jomova or Marian Valko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jomova, K., Baros, S. & Valko, M. Redox active metal-induced oxidative stress in biological systems. Transition Met Chem 37, 127–134 (2012). https://doi.org/10.1007/s11243-012-9583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9583-6

Keywords

Navigation