Skip to main content
Log in

Manganese(II), cobalts(II) and nickel(II) complexes of tris(2-pyridyl)phosphine and their catalytic activity toward oxidation of tetralin

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Monomeric Mn2+, Co2+ and Ni2+ complexes of tris(2-pyridyl)phosphine (P(2-py)3 were synthesized through the reaction of the hydrated metal(II) chlorides with P(2-py)3 in near-quantitative yields. The solid-state structure of the Mn complex was determined by single-crystal X-ray diffraction. All three complexes were tested as homogeneous catalysts for the oxidation of tetralin to α-tetralone with tert-butyl hydroperoxide (TBHP) as oxidant. The influences of temperature, solvent, catalyst molar ratio and time of the reaction on the catalyzed reactions were investigated.

Graphical abstract

  • Mn2+, Co2+ and Ni2+ complexes of tris(2-pyridyl)phosphine were synthesized.

  • Prepared complexes were tested as homogeneous catalyst in the oxidation of tetralin.

  • Crystallographic investigation was focused on Mn2+ complex as the best catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  1. Razi R, Abedini M, Nemati Kharat A, Amini MM (2008) Catal Commun 9:245–249

    Google Scholar 

  2. Labinger JA (2004) J Mol Catal A Chem 220:27–35

    Article  CAS  Google Scholar 

  3. Navarro M, Escobar A, Landaeta VR, Visbal G, Lopez-Linares F, Luis ML, Fuentes A (2009) Appl Catal A Gen 363:27–31

    Article  CAS  Google Scholar 

  4. Ma Y, Zeng M, He J, Duan L, Wang J, Li J, Wang J (2011) Appl Catal A Gen 396:123–128

    Article  CAS  Google Scholar 

  5. Mahendiran C, Sangeetha P, Vijayan P, SardharBasha SJ, Shanthi K (2007) J Mol Catal A Chem 275:84–90

    Article  CAS  Google Scholar 

  6. Bhattacharjee S, Jeong KE, Jeong SY, Ahn WS (2010) New J Chem 34:156–162

    Article  CAS  Google Scholar 

  7. Wang C, Zhang Y, Yuan B, Zhao J (2010) J Mol Catal A Chem 333:173–179

    Article  CAS  Google Scholar 

  8. Louis B, Detoni C, Carvalho NMF, Duarte CD, Antunes OAC (2009) Appl Catal A Gen 360:218–225

    Article  CAS  Google Scholar 

  9. Chandran RS, Ford WT (1988) J Chem Soc Chem Commun 29:104–105

    Google Scholar 

  10. Xamena FXL, Casanova O, Tailleur RG, Garcia H, Corma A (2008) J Catal 255:220–227

    Google Scholar 

  11. Chandran RS, Srinivasan S, Ford WT (1989) Langmuir 5:1061–1071

    Article  CAS  Google Scholar 

  12. Nowotny M, Pedersen LN, Hanefeld U, Maschmeyer T (2002) Chem Eur J 8:3724–3731

    Article  CAS  Google Scholar 

  13. Richardson DE, Taube H (1984) Coord Chem Rev 60:107–129

    Article  CAS  Google Scholar 

  14. Anaya SAS, Hagenbach A, Abram U (2008) Polyhedron 27:3587–3592

    Article  Google Scholar 

  15. Calhorda MJ, Ceamanos C, Crespo O, Gimeno M, Laguna A, Larraz C, Vaz PD, Villacampa MD (2010) Inorg Chem 49:8255–8269

    Article  CAS  Google Scholar 

  16. Zhang T, Chen C, Qin Y, Meng X (2006) Inorg Chem Commun 9:72–74

    Article  CAS  Google Scholar 

  17. Gladiali S, Pinna L, Arena CG, Rotondo E, Faraone F (1991) J Mol Catal 66:183–190

    Google Scholar 

  18. Kuo CY, Fuh YS, Shiue JY, Yu SJ, Lee GH, Peng SM (1999) J Organomet Chem 588:260–267

    Article  CAS  Google Scholar 

  19. Nemati Kharat A, Tamaddoni Jahromi B, Bakhoda A, Abbasi A (2010) J Coord Chem 63:3783–3791

    Article  Google Scholar 

  20. Carter CW, Sweet RM (1997) Method Enzym 276:307–326

    Article  Google Scholar 

  21. Sheldrick GM (2001) SHELXTL-PC, Version 6.1. Madison, WI

  22. Notash B, Safari N, Abedi A, Amani V, Khavasi HR (2009) J Coord Chem 62:1638–1649

    Article  CAS  Google Scholar 

  23. Majumder A, Choudhury CR, Mitra S, Marschner C, Baumgartner J (2005) Naturforsch Z 60b:99–105

  24. Najafpour MM, Boghaei DM, McKee V (2010) Polyhedron 29:3246–3250

    Article  CAS  Google Scholar 

  25. Shi JM, Meng XZ, Sun YM, Xu HY, Shi W, Cheng P, Liu LD (2009) J Mol Struct 917:164–169

    Article  CAS  Google Scholar 

  26. Gamez P, Simons C, Steensma R, Driesen WL, Challa G, Reedijk J (2001) Eur Polym J 37:1293–1296

    Article  CAS  Google Scholar 

  27. Shaikh RA, Chandrasekar G, Biswas K, Choi J, Son W, Jeong S, Ahn WS (2008) Catal Today 132:52–57

    Article  CAS  Google Scholar 

  28. Ahn WS, Zhong Y, Abrams CF, Lim PK, Brown PA (1997) J Phys Chem B 101:596–602

    Article  CAS  Google Scholar 

  29. Fukuzumi SI, Ono Y (1976) J Phys Chem 80:2973–2978

    Google Scholar 

  30. Kamiya Y (1966) Tetrahedron 22:2029–2038

    Article  CAS  Google Scholar 

  31. Prasad KM, Athappan R, Srivastava RD (1979) J Catal 59:460–464

    Article  CAS  Google Scholar 

  32. Sithambaram S, Nyutu EK, Suib SL (2008) Appl Catal A Gen 348:214–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank The University of Tehran for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nemati Kharat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemati Kharat, A., Tamaddoni Jahromi, B. & Bakhoda, A. Manganese(II), cobalts(II) and nickel(II) complexes of tris(2-pyridyl)phosphine and their catalytic activity toward oxidation of tetralin. Transition Met Chem 37, 63–69 (2012). https://doi.org/10.1007/s11243-011-9558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9558-z

Keywords

Navigation