Skip to main content
Log in

Three manganese(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three Mn(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores, namely [Mn(L1)(HL1)(Cl)] (1), [Mn(1,4-ndc)(HL1)] (2), and [Mn3(cis-chdc)2(trans-chdc)(L2)2] (3), where HL1 = 1-(1H-imidazo[4,5-f][1, 10]phenanthrolin-2-yl)naphthalen-2-ol, L2 = 2-(4-fluorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline, 1,4-ndc = 1,4- naphthalenedicarboxylate and chdc = 1,4-cyclohexanedicarboxylate, have been synthesized under hydrothermal conditions. Their structures have been determined by single crystal X-ray diffraction analyses and further characterized by physico-chemical and spectroscopic methods. Compound 1 shows a one-dimensional zigzag chain structure. The neighboring chains are extended into a two-dimensional 3-connected (6,3) network by π–π interactions. Interestingly, two (6,3) networks are interpenetrated in a twofold mode. Compound 2 displays a 2D 4-connected (4,4) network structure based on dinuclear Mn(II) units. Adjacent networks are further connected through π–π interactions to form a three-dimensional supramolecular architecture. Compound 3 shows a 2D 4-connected (4,4) network structure based on trinuclear Mn(II) units. Further, the π–π interactions among adjacent networks resulted in a 3D supramolecular architecture for 3.

Graphical Abstract

Three manganese(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores and have been successfully synthesized under hydrothermal conditions, where their physico-chemical and spectroscopic behaviors have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ockwig NW, Delgado-Friederichs O, O’Keeffe M, Yaghi OM (2005) Acc Chem Res 38:176–182

    Article  CAS  Google Scholar 

  2. Batten SR, Robson R (1998) Angew Chem Int Ed 37:1460–1494

    Article  Google Scholar 

  3. Batten SR (2001) CrystEngCommun 3:67–73

    Article  Google Scholar 

  4. Blatov VA, Carlucci L, Ciani G, Proserpio DM (2004) CrystEngComm 6:378–395

    Article  Google Scholar 

  5. Carlucci L, Ciani G, Proserpio DM (2003) Coord Chem Rev 246:247–289

    Article  CAS  Google Scholar 

  6. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629–16581

    Article  CAS  Google Scholar 

  7. Ren YP, Kong XJ, Hu XY, Sun M, Long LS, Huang RB, Zheng LS (2006) Inorg Chem 45:4016–4023

    Article  CAS  Google Scholar 

  8. Kepert CJ, Prior TJ, Rosseinsky MJ (2000) J Am Chem Soc 122:5158–5168

    Article  CAS  Google Scholar 

  9. Hagrman D, Hagrman PJ, Zubieta J (1999) Angew Chem Int Ed 38:3165–3168

    Article  CAS  Google Scholar 

  10. Hoskins BF, Robson R, Slizys DA (1997) J Am Chem Soc 119:2952–2953

    Article  CAS  Google Scholar 

  11. Hoskins BF, Robson R, Slizys DA (1997) Angew Chem Int Ed 36:2336–2338

    Article  CAS  Google Scholar 

  12. Wang XL, Qin C, Wang EB, Li YG, Su ZM, Xu L, Carlucci L (2005) Angew Chem Int Ed 44:5824–5827

    Article  CAS  Google Scholar 

  13. Steel PJ (2005) Acc Chem Res 38:243–250

    Article  CAS  Google Scholar 

  14. Sha JQ, Peng J, Tian AX, Liu HS, Chen J, Zhang PP, Su ZM (2007) Cryst Growth Des 7:2535–2541

    Article  CAS  Google Scholar 

  15. Fukaya K, Yamase T (2003) Angew Chem Int Ed 42:654–658

    Article  CAS  Google Scholar 

  16. Akbar Ali M, Mirza AH, Ejau WB, Bernhardt PV (2006) Polyhedron 25:3337–3342

    Article  CAS  Google Scholar 

  17. Lobana TS, Bawa G, Butcher RJ, Liaw B-J, Liu CW (2006) Polyhedron 25:2897–2903

    Article  CAS  Google Scholar 

  18. Wang XL, Guo YQ, Li YG, Wang EB, Hu CW, Hu NH (2003) Inorg Chem 42:4135–4140

    Article  CAS  Google Scholar 

  19. Li CH, Huang KL, Chi YN, Liu X, Han ZG, Shen L, Hu CW (2009) Inorg Chem 48:2010–2017

    Article  CAS  Google Scholar 

  20. Zhang PP, Peng J, Sha JQ, Tian AX, Pang HJ, Chen Y, Zhu M (2009) CrystEngComm 11:902–908

    Article  CAS  Google Scholar 

  21. Xu H, Song YL, Mi LW, Hou HW, Tang MS, Sang YL, Fan YT, Pan Y (2006) Dalton Trans 6:838–845

    Article  Google Scholar 

  22. Kong ZG, Wang XY, Carlucci L (2009) Inorg Chem Commun 12:691–694

    Article  CAS  Google Scholar 

  23. Kong ZG, Ma XY, Xu ZL (2010) Z Naturforsch B 65:1173–1176

    CAS  Google Scholar 

  24. Yang J, Li GD, Cao JJ, Yue Q, Li GH, Chen JS (2007) Chem Eur J 13:3248–3261

    Article  CAS  Google Scholar 

  25. Wang XY, Ma S, Li T, Ng SW (2011) Z Naturforsch B 66:103–107

    CAS  Google Scholar 

  26. Sheldrick GM (2008) Acta Crystallogr A64:112–122

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Key Laboratory of Preparation and Applications of Environmental Friendly Materials and Institute Foundation of Siping City (No. 2009011) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Yan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials 1 (DOC 2240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, ZL., He, Y., Ma, S. et al. Three manganese(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores. Transition Met Chem 36, 585–591 (2011). https://doi.org/10.1007/s11243-011-9506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9506-y

Keywords

Navigation