Skip to main content
Log in

A series of trinuclear sandwich-like cyanide-bridged iron(III)-manganese(II) complexes: synthesis, crystal structures, and magnetic properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four pyridinecarboxamide iron dicyanide building blocks and one Mn(III) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a series of trinuclear cyanide-bridged FeIII–MnII complexes: {[Mn(DMF)2 (MeOH)2][Fe(bpb)(CN)2]2}·2DMF (1), {[Mn(MeOH)4][Fe(bpmb)(CN)2]2}·2MeOH·2H2O (2), {[Mn(MeOH)4][Fe(bpdmb)(CN)2]2}·2MeOH·2H2O (3) and {[Mn(MeOH)4][Fe(bpClb)(CN)2]2}·4MeOH (4) (bpb2− = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2− = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpdmb2− = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, bpClb2− = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate). Single-crystal X-ray diffraction analysis shows their similar sandwich-like structures, in which the two cyanide-containing building blocks act as monodentate ligands through one of their two cyanide groups to coordinate the Mn(II) center. Investigation of the magnetic properties of these complexes reveals antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) centers through the bridging cyanide group. A best fit to the magnetic susceptibilities of complexes 1 and 3 gave the magnetic coupling constants J = −1.59(2) and −1.32(4) cm−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kahn O (1993) Molecular magnetism. VCH, Weinheim

    Google Scholar 

  2. Sato O, Kawakami T, Kimura M, Hishiya S, Kubo S, Einaga Y (2004) J Am Chem Soc 126:13176

    Article  CAS  Google Scholar 

  3. Shatruk M, Dragulescu-Andrasi A, Chambers KE, Stoian SA, Bominaar EL, Achim C, Dunbar KR (2007) J Am Chem Soc 129:6104

    Article  CAS  Google Scholar 

  4. Lu Z, Wang X, Liu Z, Liao B, Gao S, Xiong R, Ma H, Zhang D, Zhu D (2006) Inorg Chem 45:999

    Article  Google Scholar 

  5. Kurmoo M, Kumagai HM, Hughes SJ, Kepert C (2003) Inorg Chem 42:6709

    Article  CAS  Google Scholar 

  6. Galet A, Muñoz MC, Real JA (2006) Inorg Chem 45:4583

    Article  CAS  Google Scholar 

  7. Agustí G, Muñoz MC, Real JA (2008) Inorg Chem 47:2552

    Article  Google Scholar 

  8. Agustí G, Muñoz MC, Gaspar AB, Real JA (2009) Inorg Chem 48:3371

    Article  Google Scholar 

  9. Long J, Chamoreau LM, Mathoniére C, Marvaud V (2009) Inorg Chem 48:22

    Article  CAS  Google Scholar 

  10. Bleuzen A, Marvaud V, Mathoniere C, Sieklucka B, Verdaguer M (2009) Inorg Chem 48:3453, and references therein

  11. Atanasov M, Comba P, Daul CA (2008) Inorg Chem 47:2449

    Article  CAS  Google Scholar 

  12. Atanasov M, Busche C, Comba P, Hallak FE, Martin B, Rajaraman G, van Slageren J, Wadepohl H (2008) Inorg Chem 47:8112

    Article  CAS  Google Scholar 

  13. Kim J II, Kwak HY, Yoon JH, Ryu DW, Yoo IY, Yang N, Cho BK, Park JG, Lee H, Hong CS (2009) Inorg Chem 48:2956

    Article  CAS  Google Scholar 

  14. Yeung WF, Lau PH, Wang XY, Gao S, Szeto L, Wong WT (2006) Inorg Chem 45:6756

    Article  CAS  Google Scholar 

  15. Bleuzen A, Marvaud V, Mathoniere C, Sieklucka B, Verdaguer M (2009) Inorg Chem 48:3453–3466

    Article  CAS  Google Scholar 

  16. Herrera JM, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathoniére C (2004) Angew Chem Int Ed 43:5468

    Article  CAS  Google Scholar 

  17. Ni ZH, Zhang LF, Tangoulis V, Wernsdorfer W, Cui AL, Sato O, Kou HZ (2007) Inorg Chem 46:6029

    Article  CAS  Google Scholar 

  18. Ni ZH, Kou HZ, Zhang LF, Ge C, Cui AL, Wang RJ, Li Y, Sato O (2005) Angew Chem Int Ed 44:7742

    Article  CAS  Google Scholar 

  19. Kou HZ, Ni ZH, Liu CM, Zhang DQ, Cui AL (2009) New J Chem 33:2296

    Article  CAS  Google Scholar 

  20. Ni ZH, Kou HZ, Zhao YH, Zheng L, Wang RJ, Cui AL, Sato O (2005) Inorg Chem 44:2050

    Article  CAS  Google Scholar 

  21. Ray M, Mukherjee R, Richardson JF, Buchanan RM (1993) J Chem Soc Dalton Trans 2451

  22. Stults RB, Marianelli RS, Day VW (1975) Inorg Chem 14:722

    Article  CAS  Google Scholar 

  23. Zhang DP, Wang HL, Chen YT, Ni ZH, Tian LJ, Jiang JZ (2009) Inorg Chem 48:5488

    Article  CAS  Google Scholar 

  24. Zhang DP, Wang HL, Chen YT, Ni ZH, Tian LJ, Jiang JZ (2009) Dalton Trans 9418

  25. Ni ZH, Tao, J, Wernsdorfer W, Cui AL, Kou HZ (2009) J Chem Soc Dalton Trans 2788

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities and the Doctoral Starting Fund of Shandong University of Technology (410027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghai Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Zhang, L., Chen, X. et al. A series of trinuclear sandwich-like cyanide-bridged iron(III)-manganese(II) complexes: synthesis, crystal structures, and magnetic properties. Transition Met Chem 36, 539–544 (2011). https://doi.org/10.1007/s11243-011-9500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9500-4

Keywords

Navigation