Skip to main content
Log in

Vanadium(V)-substituted Keggin-type heteropolyoxotungstophosphates as electron transfer and antimicrobial agents: oxidation of glutathione and sensitization of MRSA towards β-lactam antibiotics

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Glutathione (GSH) undergoes facile electron transfer with vanadium(V)-substituted Keggin-type heteropolyoxometalates, \( [ {\text{PV}}^{\text{V}} {\text{W}}_{ 1 1} {\text{O}}_{ 4 0} ]^{{ 4 { - }}} \) (HPA1) and \( [ {\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} ]^{{ 5 { - }}} \) (HPA2). The kinetics of these reactions have been investigated in phthalate buffers spectrophotometrically at 25 °C in aqueous medium. One mole of HPA1 consumes one mole of GSH and the product is the one-electron reduced heteropoly blue, \( [ {\text{PV}}^{\text{IV}} {\text{W}}_{ 1 1} {\text{O}}_{ 40} ]^{ 5- } \). But in the GSH-HPA2 reaction, one mole of HPA2 consumes two moles of GSH and gives the two-electron reduced heteropoly blue \( [ {\text{PV}}^{\text{IV}} {\text{V}}^{\text{IV}} {\text{W}}_{ 10} {\text{O}}_{ 40} ]^{ 7- } \). Both reactions show overall third-order kinetics. At constant pH, the order with respect to both [HPA] species is one and order with respect to [GSH] is two. At constant [GSH], the rate shows inverse dependence on [H+], suggesting participation of the deprotonated thiol group of GSH in the reaction. A suitable mechanism has been proposed and a rate law for the title reaction is derived. The antimicrobial activities of HPA1, HPA2 and \( [ {\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 9} {\text{O}}_{ 4 0} ]^{{ 6 { - }}} \) (HPA3) against MRSA were tested in vitro in combination with vancomycin and penicillin G. The HPAs sensitize MRSA towards penicillin G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Hand CE, Honek JF (2005) J Nat Prod 68:293

    Article  CAS  Google Scholar 

  2. Hayes JD, McLellan (1999) Free Radical Res 31:273

    Article  CAS  Google Scholar 

  3. Olatunji MA, McAuley A (1977) Can J Chem 55:3355

    Google Scholar 

  4. Singh BK (2005) Asian J Chem 17:1

    CAS  Google Scholar 

  5. Legrum W (1986) Toxicology 42:281

    Article  CAS  Google Scholar 

  6. Hiran BL, Dulawat SS, Rathore R, Rathore N (2007) E J Chem 4:279

    CAS  Google Scholar 

  7. Campanali AA, Kwiecien TD, Hrychoczuk L, Kodanko JJ (2010) Inorg Chem 49:4759

    Article  CAS  Google Scholar 

  8. Gangopadhyay S, Mohamed Ali, Dutta A, Banergee P (1994) J Chem Soc Dalton Trans 841

  9. Ayoko GA, Iyun JF, Ekubo AT (1993) Transit Met Chem 18:6

    Article  CAS  Google Scholar 

  10. Subudhi U, Chainy GBN, Mohanty P (2006) Indian J Biochem Biophys 43:37

    CAS  Google Scholar 

  11. Ayoko G, Olatunji M (1983) Inorg Chim Acta 80:L15

    Article  CAS  Google Scholar 

  12. Stochel G, Martinez P, Van Eldik R (1994) J Inorg Biochem 54:131

    Article  CAS  Google Scholar 

  13. Martin JF, Spence JT (1970) J Phys Chem 74:2863

    Article  CAS  Google Scholar 

  14. Nomiya K, Nemoto Y, Hasegaua T, Matsuoka S (2000) J Mol Catal A Chemical 152:55

    Article  CAS  Google Scholar 

  15. Kuznesov AE, Geletii YV, Hill CL, Morokuma K, Musaev DG (2009) Inorg Chem 48:1871

    Article  Google Scholar 

  16. Tajima Y (2005) Mini Rev Med Chem 5:255

    CAS  Google Scholar 

  17. Evangelou (2002) Crit Rev Oncol/Hemat 42:249

    Article  Google Scholar 

  18. Sami P, Rajasekaran K (2009) J Chem Sci 121:155

    Article  CAS  Google Scholar 

  19. Sami P, Venkateshwari K, Mariselvi N, Sarathi A, Rajasekaran K (2009) Transit Met Chem 34:733

    Article  CAS  Google Scholar 

  20. Sami P, Venkateshwari K, Mariselvi N, Sarathi A, Rajasekaran K (2010) Transit Met Chem 35:137

    Article  CAS  Google Scholar 

  21. Sami P, Mariselvi N, Venkateshwari K, Vairalakshmi M, Sarathi A, Rajasekaran K (2010) Transit Met Chem 35:563

    Article  CAS  Google Scholar 

  22. Sami P, Mariselvi N, Venkateshwari K, Sarathi A, Rajasekaran K (2010) J Chem Sci 122:335

    Article  CAS  Google Scholar 

  23. Macara IG, Kustin K, Cantley LC (1980) Biochim Biophys Acta 629:95

    CAS  Google Scholar 

  24. Hill CL, Weeks MS, Schinazi RF (1990) J Med Chem 33:2767

    Article  CAS  Google Scholar 

  25. Shiegta S, Mori S, Wantabe J, Baba M, Khonkin AM, Hill CL, Schizazi RT (1995) Antiviral Chem Chemother 6:114

    Google Scholar 

  26. Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K, Yamase T (2003) Antiviral Res 58:265

    Article  CAS  Google Scholar 

  27. Domaille PJ (1984) J Am Chem Soc 106:7677

    Article  CAS  Google Scholar 

  28. Vogel AI (1969) A textbook of quantitative inorganic analysis, 3rd edn. Longman, London

    Google Scholar 

  29. Smith DP, Pope MT (1968) Anal Chem 40:1906

    Article  CAS  Google Scholar 

  30. Finke RG, Droege MW, Domaille PJ (1987) Inorg Chem 26:3886

    Article  CAS  Google Scholar 

  31. Ho RKC, Klemperer WG (1978) J Am Chem Soc 100:6772

    Article  CAS  Google Scholar 

  32. John A (1985) In: Lennette EH (ed) “Manual of clinical microbiology”. American Society for Microbiology, Washington, D.C, p 967

    Google Scholar 

  33. Acar JF, Goldstein FW (1991) In: Victor Lorian MD (ed) “Antibiotics in Laboratory medicine”, 3rd edn. Williams & Wilkins, Maryland, USA, pp 17–52

    Google Scholar 

  34. Garfinkel D (1958) J Am Chem Soc 80:4833

    Article  CAS  Google Scholar 

  35. Smith DP, So H, Bender J, Pope MT (1973) Inorg Chem 12:685

    Article  CAS  Google Scholar 

  36. Ayoko GA, Olatunji MA (1983) Polyhedron 2:577

    Article  CAS  Google Scholar 

  37. Carbyle DW (1972) J Am Chem Soc 94:4525

    Article  Google Scholar 

  38. Beetle JK, Haight Jr Pnvg GP (1972) Inorg Chem 17:93

    Google Scholar 

  39. Hoffmann MZ, Hayen E (1973) J Phys Chem 77:990

    Article  Google Scholar 

  40. Neumann R, Lissel M (1989) J Org Chem 54:4607

    Article  CAS  Google Scholar 

  41. Smith DP, Pope MT (1973) Inorg Chem 12:331

    Article  CAS  Google Scholar 

  42. Argitis P, Papaconstantinou E (1986) Inorg Chem 25:4386

    Article  CAS  Google Scholar 

  43. Fukuda N, Yamase T, Tajima Y (1999) Biol Pharm Bull 22:463

    CAS  Google Scholar 

Download references

Acknowledgments

The authors P.S and K.R thank University Grants Commission, New Delhi, India for the financial assistance in the form of Major Research Project. The authors thank Managing Board, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar for infrastructural facilities. The authors are highly thankful to Professor D.M. Stanbury, Auburn University, USA, for helpful discussion to formulate the mechanism of the title reaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasi Rajasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sami, P., Anand, T.D., Premanathan, M. et al. Vanadium(V)-substituted Keggin-type heteropolyoxotungstophosphates as electron transfer and antimicrobial agents: oxidation of glutathione and sensitization of MRSA towards β-lactam antibiotics. Transition Met Chem 35, 1019–1025 (2010). https://doi.org/10.1007/s11243-010-9425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-010-9425-3

Keywords

Navigation