Skip to main content

Zirconium(IV) chloride as versatile catalyst for the expeditious synthesis of quinoxalines and pyrido[2,3-b]pyrazines under ambient conditions

Abstract

Among the various transition metal chlorides, zirconium(IV) chloride was found to be an efficient catalyst for the rapid synthesis of a wide range of 2,3-dialkyl- and 2,3-diaryl-quinoxaline and pyrido[2,3-b]pyrazine derivatives in excellent yields at room temperature. The remarkable features of this catalytic process are the mild reaction conditions, quantitative yields, short reaction times, high conversions, tolerability of various functional groups, clean reaction profiles, and operational simplicity.

Graphical Abstract

Among the various transition metal chlorides, zirconium(IV) chloride was found to be an efficient catalyst for the rapid synthesis of a wide range of 2,3-dialkyl- and 2,3-diaryl-quinoxaline and pyrido[2,3-b]pyrazine derivatives in excellent yields at room temperature. The remarkable features of this catalytic process are the mild reaction conditions, quantitative yields, short reaction times, high conversions, tolerability of various functional groups, clean reaction profiles, and operational simplicity.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2

References

  1. Urleb U (1998) In: Schaumann E (ed) Methods of Organic Chemistry (Houben-Weyl), Thieme, Stuttgart, New York, Vol E9b/Part 2 (Hetarenes IV), 193–265

  2. Sako M (2003) In: Yamamoto Y (Volume Ed) Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, Thieme, Stuttgart, New York, Vol 16, 1269–1290 and refs cited therein

  3. Hassan SY, Khattab SN, Bekhit AA, Amer A (2006) Bioorg Med Chem Lett 16:1753–1756

    Article  CAS  Google Scholar 

  4. Perumal RV, Mahesh R (2006) Bioorg Med Chem Lett 16:2769–2772

    Article  CAS  Google Scholar 

  5. Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huff JR, Huber HE, Duggan ME, Lindsley CW (2005) Bioorg Med Chem Lett 15:905–909

    Article  CAS  Google Scholar 

  6. Gomtsyan A, Bayburt EK, Schmidt RG, Zheng GZ, Perner RJ, Didomenico S, Koenig JR, Turner S, Jinkerson T, Drizin I, Hannick SM, Macri BS, McDonald HA, Honore P, Wismer CT, Marsh KC, Wetter J, Stewart KD, Oie T, Jarvis MF, Surowy CS, Faltynek CR, Lee C-H (2005) J Med Chem 48:744–752

    Article  CAS  Google Scholar 

  7. Jaso A, Zarranz B, Aldana I, Monge A (2005) J Med Chem 48:2019–2025

    Article  CAS  Google Scholar 

  8. Seitz LE, Suling WJ, Reynolds RC (2002) J Med Chem 45:5604–5606

    Article  CAS  Google Scholar 

  9. Ali MM, Ismail MMF, EI-Gaby MSA, Zahran MA, Ammar TA (2000) Molecules 5:864–873

    Article  CAS  Google Scholar 

  10. Gazit A, App H, McMahon G, Chen J, Levitzki A, Bohmer FD (1996) J Med Chem 39:2170–2177

    Article  CAS  Google Scholar 

  11. Bailly C, Echepare S, Gago F, Waring M (1999) Anticancer Drug Des 14:291–303

    CAS  Google Scholar 

  12. Dell A, Williams DH, Morris HR, Smith GA, Feeney J, Roberts GCK (1975) J Am Chem Soc 97:2497–2502

    Article  CAS  Google Scholar 

  13. Brown DJ (2004) In: Taylor EC, Wipf P (eds) Quinoxalines: SUPPLEMENT II, The Chemistry of Heterocyclic Compounds. John Wiley and Sons, New Jersey

    Google Scholar 

  14. Villemin D, Martin B (1995) Synth Commun 25:2319–2326

    Article  CAS  Google Scholar 

  15. Juncai F, Yang L, Qinghua M, Bin L (1998) Synth Commun 28:193–196

    Article  Google Scholar 

  16. Vázquez E, de la Hoz A, Elander N, Moreno A, Stone-Elander S (2001) Heterocycles 55:109–113

    Article  Google Scholar 

  17. Goswami S, Adak AK (2002) Tetrahedron Lett 43:8371–8373

    Article  CAS  Google Scholar 

  18. Zhao Z, Wisnoski DD, Wolkenberg SE, Leister WH, Wang Y, Lindsley CW (2004) Tetrahedron Lett 45:4873–4876

    Article  CAS  Google Scholar 

  19. Kim SY, Park KH, Chung YK, (2005) Chem Commun 1321–1323

  20. Kidwai M, Saxena S, Mohan R (2005) J Kor Chem Soc 49:288–291

    Article  CAS  Google Scholar 

  21. Azizian J, Karimi AR, Kazemizadeh Z, Mohammadi AA, Mohammadizadeh MR (2005) Tetrahedron Lett 46:6155–6157

    Article  CAS  Google Scholar 

  22. Gris J, Glisoni R, Fabian L, Fernández B, Moglioni AG (2008) Tetrahedron Lett 49:1053–1056

    Article  CAS  Google Scholar 

  23. Landge SM, Török B (2008) Catal Lett 122:338–343

    Article  CAS  Google Scholar 

  24. Liu J-H, Wu A-T, Huang M-H, Wu C-W, Chung W-S (2000) J Org Chem 65:3395–3403

    Article  CAS  Google Scholar 

  25. Kaupp G, Naimi-Jamal MR (2002) Eur J Org Chem 1368–1373

  26. More SV, Sastry MNV, Wang C–C, Yao C-F (2005) Tetrahedron Lett 46:6345–6348

    Article  CAS  Google Scholar 

  27. Bhosale RS, Sarda SR, Ardhapure SS, Jadhav WN, Bhusare SR, Pawar RP (2005) Tetrahedron Lett 46:7183–7186

    Article  CAS  Google Scholar 

  28. Heravi MM, Bakhtiari K, Tehrani MH, Javadi NM, Oskooie HA (2006) Arkivoc xvi:16–22

    Google Scholar 

  29. Huang T-K, Wang R, Shi L, Lu X-X (2008) Catal Commun 9:1143–1147

    Article  CAS  Google Scholar 

  30. Srinivas C, Kumar CNSSP, Jayathirtha Rao V, Palaniappan S (2007) J Mol Catal A Chem 265:227–230

    Article  CAS  Google Scholar 

  31. More SV, Sastry MNV, Yao C-F (2006) Green Chem 8:91–95

    Article  CAS  Google Scholar 

  32. Heravi MM, Tehrani MH, Bakhtiari K, Oskooie HA (2007) Catal Commun 8:1341–1344

    Article  CAS  Google Scholar 

  33. Kumar A, Kumar S, Saxena A, De A, Mozumdar S (2008) Catal Commun 9:778–784

    Article  CAS  Google Scholar 

  34. Hasaninejad A, Zare A, Zolfigol MA, Shekouhy M (2009) Synth Commun 39:569–579

    Article  CAS  Google Scholar 

  35. Smitha G, Chandrasekhar S, Reddy ChS, (2008) Synthesis 829–855

  36. Firouzabadi H, Jafarpour M (2008) J Iran Chem Soc 5:159–183

    CAS  Google Scholar 

  37. Sharma GVM, Reddy KL, Lakshmi PS, Ravi R, Kunwar AC (2006) J Org Chem 71:3967–3969

    Article  CAS  Google Scholar 

  38. Li Q, Shi M, Lyte JM, Li G (2006) Tetrahedron Lett 47:7699–7702

    Article  CAS  Google Scholar 

  39. Kumar A, Akanksha A (2007) J Mol Catal A Chem 274:212–216

    Article  CAS  Google Scholar 

  40. Kumar V, Kaur S, Kumar S (2006) Tetrahedron Lett 47:7001–7005

    Article  CAS  Google Scholar 

  41. Smitha G, Reddy ChS (2007) Catal Commun 8:434–436

    Article  CAS  Google Scholar 

  42. Shirini F, Mollarazi E (2007) Catal Commun 8:1393–1396

    Article  CAS  Google Scholar 

  43. Rodríguez-Domínguez JC, Bernardi D, Kirsch G (2007) Tetrahedron Lett 48:5777–5780

    Article  CAS  Google Scholar 

  44. Miles RB, Davis CE, Coates RM (2006) J Org Chem 71:1493–1501

    Article  CAS  Google Scholar 

  45. Yadav JS, Rajasekhar K, Murthy MSR (2006) Tetrahedron Lett 47:6149–6151

    Article  CAS  Google Scholar 

  46. Firouzabadi H, Iranpoor N, Maasoumeh J (2006) Tetrahedron Lett 47:93–97

    Article  CAS  Google Scholar 

  47. Zhang Z-H, Yin L, Wang Y-M (2007) Catal Commun 8:1126–1131

    Article  CAS  Google Scholar 

  48. Reddy KS, Reddy CV, Mahesh RM, Reddy KR, Raju PVK, Reddy VVN (2007) Can J Chem 85:184–188

    Article  CAS  Google Scholar 

  49. Darabi HR, Mohandessi S, Aghapoor K, Mohsenzadeh F (2007) Catal Commun 8:389–392

    Article  CAS  Google Scholar 

  50. Darabi HR, Tahoori F, Aghapoor K, Taala F, Mohsenzadeh F (2008) J Braz Chem Soc 19:1646–1652

    Article  CAS  Google Scholar 

  51. Mohsenzadeh F, Aghapoor K, Darabi HR (2007) J Braz Chem Soc 18:297–303

    Article  CAS  Google Scholar 

  52. Aghapoor K, Darabi HR, Mohsenzadeh F (2005) Z Naturforsch 60b:901–903

    Google Scholar 

  53. Nasielski J, Heilporn S, Nasielski-Hinkens R, Geerts-Evrard F (1987) Tetrahedron 43:4329–4338

    Article  CAS  Google Scholar 

  54. Yanoshita R, Okamoto K, Yomo Y, Suwabe Y, Oota A (1991) Japanese Patent 03 74386, Chem Abstr (1991) 115:183358

  55. Kaye IA (1964) J Med Chem 7:240–241

    Article  CAS  Google Scholar 

  56. Bost RW, Towell EE (1948) J Am Chem Soc 70:903–905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Reza Darabi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aghapoor, K., Darabi, H.R., Mohsenzadeh, F. et al. Zirconium(IV) chloride as versatile catalyst for the expeditious synthesis of quinoxalines and pyrido[2,3-b]pyrazines under ambient conditions. Transition Met Chem 35, 49–53 (2010). https://doi.org/10.1007/s11243-009-9294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9294-9

Keywords

  • CDCl3
  • Polyaniline
  • Pyrazines
  • Quinoxaline
  • Benzil