Skip to main content
Log in

Synthesis, crystal structures, and antimicrobial activity of two thiocyanato-bridged dinuclear copper(II) complexes derived from 2,4-dibromo-6-[(2-diethylaminoethylimino)methyl]phenol and 4-nitro-2-[(2-ethylaminoethylimino)methyl]phenol

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A pair of structurally similar thiocyanato-bridged dinuclear Cu(II) complexes derived from the Schiff bases 2,4-dibromo-6-[(2-diethylaminoethylimino)methyl]phenol and 4-nitro-2-[(2-ethylaminoethylimino)methyl]phenol has been prepared and characterized by physico-chemical and spectroscopic methods. Each Cu atom is five-coordinate in a square-pyramidal geometry, with one O and two N atoms of one Schiff base ligand and one N atom of a bridging thiocyanate ligand defining the basal plane, and with one terminal S atom of another bridging thiocyanate ligand occupying the apical position. Antimicrobial activities of the Schiff bases and the two complexes have been tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Szlyk E, Surdykowski A, Barwiolek M, Larsen E (2000) Transit Met Chem 25:670. doi:10.1023/A:1007044527744

    Article  CAS  Google Scholar 

  2. Yaftian MR, Rayati S, Safarbali R, Torabi N, Khavasi HR (2007) Transit Met Chem 32:374. doi:10.1007/s11243-006-0177-z

    Article  CAS  Google Scholar 

  3. Gudasi KB, Patil MS, Vadavi RS, Shenoy RV, Patil SA (2006) Transit Met Chem 31:986. doi:10.1007/s11243-006-0094-1

    Article  CAS  Google Scholar 

  4. Gudasi KB, Patil MS, Vadavi RS, Shenoy RV, Patil SA, Nethaji M (2006) Transit Met Chem 31:580. doi:10.1007/s11243-006-0031-3

    Article  CAS  Google Scholar 

  5. Reddy PAN, Datta R, Chakravarty AR (2000) Inorg Chem Commun 3:322. doi:10.1016/S1387-7003(00)00083-6

    Article  CAS  Google Scholar 

  6. Thangadurai TD, Ihm SK (2004) Transit Met Chem 29:189. doi:10.1023/B:TMCH.0000019419.40754.63

    Article  CAS  Google Scholar 

  7. Shi L, Ge HM, Tan SH, Li HQ, Song YC, Zhu HL, Tan RX (2007) Eur J Med Chem 42:558. doi:10.1016/j.ejmech.2006.11.010

    Article  CAS  PubMed  Google Scholar 

  8. Panneerselvam P, Nair RR, Vijayalakshmi G, Subramanian EH, Sridhar SK (2005) Eur J Med Chem 40:225. doi:10.1016/j.ejmech.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  9. Kaizer J, Goger S, Reglier M, Giorgi M (2006) Inorg Chem Commun 9:251. doi:10.1016/j.inoche.2005.11.011

    Article  CAS  Google Scholar 

  10. Phaniband MA, Dhumwad SD (2007) Transit Met Chem 32:1117. doi:10.1007/s11243-007-0295-2

    Article  CAS  Google Scholar 

  11. García-Raso Á, Fiol JJ, López-Zafra A, Castro JA, Cabrero A, Mata I, Molins E (2003) Polyhedron 22:403. doi:10.1016/S0277-5387(02)01364-5

    Article  Google Scholar 

  12. Smekal Z, Brezina F, Sindelar Z, Klicka R, Nadvornik M (1997) Transit Met Chem 22:299. doi:10.1023/A:1018480911747

    Article  CAS  Google Scholar 

  13. You Z-L, Han X, Zhang G-N (2008) Z Anorg Allg Chem 634:142. doi:10.1002/zaac.200700345

    Article  CAS  Google Scholar 

  14. You Z-L, Jiao Q-Z, Niu S-Y, Chi J-Y (2006) Z Anorg Allg Chem 632:2486. doi:10.1002/zaac.200600214

    Article  CAS  Google Scholar 

  15. Sheldrick GM (1997) SHELXTL, version 5.10. Bruker AXS Inc., Madison

    Google Scholar 

  16. Kovacic JE (1967) Spectrochim Acta 23A:183. doi:10.1016/0584-8539(67)80219-8

    Article  CAS  Google Scholar 

  17. Fernández-g JM, Acevedo-Arauz E, Cetina-Rosado R, Toscano RA, Macías-ruvalcaba N, Aguilar-martínez M (1999) Transit Met Chem 24:18. doi:10.1023/A:1006923926389

    Article  Google Scholar 

  18. Kulkarni VH, Patil BR, Probhakar BR (1981) J Inorg Nucl Chem 43:17. doi:10.1016/0022-1902(81)80430-7

    Article  CAS  Google Scholar 

  19. Clark BJH, Williams CS (1996) Spectrochim Acta 22:108

    Google Scholar 

  20. Christidis PC, Bolos CA, Bauer G, Will G, Trendafilova NS, Nikolov GS (1995) Inorg Chim Acta 228:173. doi:10.1016/0020-1693(94)04176-V

    Article  CAS  Google Scholar 

  21. Addison AW, Rao TN, Reedijk J, Vanrijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349. doi:10.1039/dt9840001349

  22. Banerjee S, Drew MGB, Lu C-Z, Tercero J, Diaz C, Ghosh A (2005) Eur J Inorg Chem 12:2376. doi:10.1002/ejic.200500080

    Article  Google Scholar 

  23. Serna ZE, Cortés R, Urtiaga MK, Barandika MG, Lezama L, Arriortua MI, Rojo T (2001) Eur J Inorg Chem 3:865. doi:10.1002/1099-0682(200103)2001:3≤865::AID-EJIC865≥3.0.CO;2-F

    Article  Google Scholar 

  24. Navarro JAR, Romero MA, Salas JM, Quirós M, Tiekink ERT (1997) Inorg Chem 36:4988. doi:10.1021/ic970083t

    Article  CAS  Google Scholar 

  25. Tümer M, Köksal H, Serin S, Digrak M (1999) Transit Met Chem 24:13. doi:10.1023/A:1006996722406

    Article  Google Scholar 

Download references

Acknowledgment

The author acknowledges the Liaodong University (China) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Hong.

Electronic supplementary material

These files are unfortunately not in the Publisher's archive anymore:

  • (CIF 16 kb)

  • (CIF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Z. Synthesis, crystal structures, and antimicrobial activity of two thiocyanato-bridged dinuclear copper(II) complexes derived from 2,4-dibromo-6-[(2-diethylaminoethylimino)methyl]phenol and 4-nitro-2-[(2-ethylaminoethylimino)methyl]phenol. Transition Met Chem 33, 797–802 (2008). https://doi.org/10.1007/s11243-008-9113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9113-8

Keywords

Navigation