Skip to main content
Log in

Arm effects of mononuclear armed cyclen copper complexes on DNA cleavage

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Novel cyclen copper(II) complexes appending different side arms were synthesized as DNA cleavage agents. Both the intermediates and mononuclear complexes were characterized by 1H NMR, ESI-HRMS, Elemental analyses and IR, and their catalytic activities for DNA cleavage and DNA binding abilities were investigated. The results indicate that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) under physiological conditions to produce nicked DNA with high yields (nearly 100%) via an oxidative mechanism in the absence of exogenous agents; The copper complex bearing an 9-anthryl group gave superior DNA interactions to those bearing phenyl or methyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (a) Kaden TA, Tschudin D, Studer M, Brunner U (1989) Pure Appl Chem 61:879. doi:10.1351/pac198961050879; (b) Fabbrizzi L, Licchelli M, Taglietti A (2003) Dalton Trans 3471. doi:10.1039/b304172g

  2. Aoki S, Kimura E (2004) Chem Rev 104:769. doi:10.1021/cr020617u

    Article  CAS  Google Scholar 

  3. Kim MS, Suh JK (2005) Bull Chem Soc 26:1911

    Article  CAS  Google Scholar 

  4. Saki N, Akkaya EU (2004) J Mol Catal A-Chem 219:227. doi:10.1016/j.molcata.2004.06.004

    Article  CAS  Google Scholar 

  5. Kimura E, Kitamura H, Ohtani K, Koike T (2000) J Am Chem Soc 122:4668. doi:10.1021/ja000083j

    Article  CAS  Google Scholar 

  6. Kikuta E, Murata M, Katsube N, Koike T, Kimura EJ (1999) Am Chem Soc 121:5426. doi:10.1021/ja983884j

    Article  CAS  Google Scholar 

  7. Aoki S, Kagata D, Shiro M, Takeda K, Kimura E (2004) J Am Chem Soc 126:13377. doi:10.1021/ja040095v

    Article  CAS  Google Scholar 

  8. Aoki S, Iwaida K, Hanamoto N, Shiro M, Kimura E (2002) J Am Chem Soc 124:5256. doi:10.1021/ja020029y

    Article  CAS  Google Scholar 

  9. Aoki S, Kawatani H, Goto T, Kimura E, Shiro M (2001) J Am Chem Soc 123:1123. doi:10.1021/ja0033786

    Article  CAS  Google Scholar 

  10. Khan MA, Mustafa J, Musarrat J (2003) Mutat Res 525:109. doi:10.1016/S0027-5107(03)00008-3

    CAS  Google Scholar 

  11. Epstein DM, Chappell LL, Khalili H, Supkowski RM, Horrocks WD, Morrow JR (2000) Inorg Chem 39:2130. doi:10.1021/ic9912068

    Article  CAS  Google Scholar 

  12. Michinobu T, Shinoda S, Nakanishi T, Hill JP, Fujii K, Tomoko NP, Tsukube H, Ariga K (2006) J Am Chem Soc 128:14478. doi:10.1021/ja066429t

    Article  CAS  Google Scholar 

  13. Senechal-David K, Pope SJA, Quinn S, Faulkner S, Gunnlaugsson T (2006) Inorg Chem 45:10040. doi:10.1021/ic061706i

    Article  CAS  Google Scholar 

  14. Gude L, Fernez JM, Grantb KB, Lorente A (2002) Tetrahedron Lett 43:4723. doi:10.1016/S0040-4039(02)00937-1

    Article  CAS  Google Scholar 

  15. Joaquín B, Gloria A, Marta GA, Jose GG, Benigno M, Malva LG (2007) Eur J Inorg Chem 6:822

    Google Scholar 

  16. Han YC, Shen T, Jiang W, Xia QF, Liu CL (2007) J Inorg Biochem 101:214. doi:10.1016/j.jinorgbio.2006.09.014

    Article  CAS  Google Scholar 

  17. Wang XY, Zhang J, Li K, Jiang N, Chen SY, Lin HH, Huang Y, Ma LJ, Yu XQ (2006) Bioorg Med Chem 14:6745. doi:10.1016/j.bmc.2006.05.049

    Article  CAS  Google Scholar 

  18. Zhao YM, Zhu JH, He WJ, Yang Z, Zhu YG, Li YZ, Zhang JF, Guo ZJ (2006) Chem Eur J 12:6621. doi:10.1002/chem.200600044

    Article  CAS  Google Scholar 

  19. Li LZ, Zhao C, Xu T, Ji HW, Yu YH, Guo GQ, Chao H (2005) J Inorg Biochem 99:1076. doi:10.1016/j.jinorgbio.2005.01.017

    Article  CAS  Google Scholar 

  20. Jin Y, Cowan JA (2005) J Am Chem Soc 127:8408. doi:10.1021/ja0503985

    Article  CAS  Google Scholar 

  21. Frei E, Luce JK, Loo TL (1971) Cancer Chemother 55:91

    Google Scholar 

  22. Wilson WL, Weiss AJ, Andrews NC (1971) Cancer Chemother 55:525

    Google Scholar 

  23. Melvin SN, William MH (1977) J Med Chem 20:179. doi:10.1021/jm00211a043

    Article  Google Scholar 

  24. Remers WA, Wunz TP, Dorr RT, Alberts DS, Tunget CL, Einspahr J, Milton S (1987) J Med Chem 30:1313. doi:10.1021/jm00391a009

    Article  Google Scholar 

  25. Bhashyam SI, Robert TD, David SA, Aniko MS, Mary K, William AR (1997) J Med Chem 40:3734. doi:10.1021/jm970308+

    Article  Google Scholar 

  26. Dias N, Goossens JF, Baldeyrou B, Lansiaux AL, Colson P, Salvo AD, Bernal J, Turnbull A, Mincher DJ, Bailly C (2005) Bioconjugate Chem 16:949. doi:10.1021/bc050065x

    Article  CAS  Google Scholar 

  27. Phanstiel O, Price HL, Wang L, Juusola J, Kline M, Shah SM (2000) J Org Chem 65:5590. doi:10.1021/jo0002792

    Article  CAS  Google Scholar 

  28. Stanley V, Christopher CS, Mavis A, Terence CJ, Stephen N (1998) J Med Chem 41:3748. doi:10.1021/jm980167r

    Article  Google Scholar 

  29. Xiang QX, Zhang J, Liu PY, Xia CQ, Zhou ZY, Xie RG, Yu XQ (2005) J Inorg Biochem 99:1661. doi:10.1016/j.jinorgbio.2005.05.008

    Article  CAS  Google Scholar 

  30. Chen SY, Huang Y, Zhang GL, Cheng H, Xia CQ, Ma LJ, Yu H, Yu XQ (2005) Synthesis 6:888

    Google Scholar 

  31. Ma LJ, Zhang GL, Chen SY, Wu B, You JS, Xia CQ, Yu XQJ (2005) J Peptide Sci 11:812. doi:10.1002/psc.685

    Article  CAS  Google Scholar 

  32. Peng W, Liu PY, Jiang N, Lin HH, Zhang GL, Yu XQ (2005) Bioorg Chem 33:374. doi:10.1016/j.bioorg.2005.07.003

    Article  CAS  Google Scholar 

  33. Li QL, Huang J, Wang Q, Jiang N, Xia CQ, Lin HH, Wu J, Yu XQ (2006) Bioorg Med Chem 14:4151. doi:10.1016/j.bmc.2006.01.069

    Article  CAS  Google Scholar 

  34. Fang YG, Zhang J, Chen SY, Jiang N, Lin HH, Zhang Y, Yu XQ (2007) Bioorg Med Chem 15:696. doi:10.1016/j.bmc.2006.10.057

    Article  CAS  Google Scholar 

  35. Tan XY, Zhang J, Huang Y, Zhang Y, Zhou LH, Jiang N, Lin HH, Wang N, Xia CQ, Yu XQ (2007) Chem Biodivers 4:2190. doi:10.1002/cbdv.200790176

    Article  CAS  Google Scholar 

  36. Athey PS, Kiefer GE (2002) J Org Chem 67:4081. doi:10.1021/jo016111d

    Article  CAS  Google Scholar 

  37. Kimura E, Aoki S, Koike T, Shiro M (1997) J Am Chem Soc 119:3068. doi:10.1021/ja9640408

    Article  CAS  Google Scholar 

  38. Gonzalez AM, Alzuet G, Borras J, Macias B, Castineiras A (2003) Inorg Chem 42:2992. doi:10.1021/ic020611n

    Article  CAS  Google Scholar 

  39. (a) Baguley BC, LeBret M (1984) Biochem 23:937. doi:10.1021/bi00300a022; (b) Lakowicz JR, Webber C (1973) Biochem 12:4161. doi:10.1021/bi00745a020

  40. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8541

    Google Scholar 

  41. Becker HC, Norden B (1999) J Am Chem Soc 121:11947. doi:10.1021/ja991844p

    Article  CAS  Google Scholar 

  42. Modukuru NK, Snow KJ, Perrin BS, Thota JJ, Kumar CV (2005) J Phys Chem 109:11810. doi:10.1021/jp050995d

    CAS  Google Scholar 

  43. Duff MR, Tan WB, Bhambhani A, Perrin BS, Thota JJ, Rodger A, Kumar CV (2006) J Phys Chem 110:20693

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Nos. 20725206, 20732004, and 20572075), Program for New Century Excellent Talents in University, Specialized Research Fund for the Doctoral Program of Higher Education and Scientific Fund of Sichuan Province for Outstanding Young Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qi Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yue, Y., Zhang, J. et al. Arm effects of mononuclear armed cyclen copper complexes on DNA cleavage. Transition Met Chem 33, 759–765 (2008). https://doi.org/10.1007/s11243-008-9108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9108-5

Keywords

Navigation