Skip to main content
Log in

Kinetic study of reaction of [ReN(H2O)(CN)4]2− with quinoline-2-carboxylate and pyridine-2,3-dicarboxylate anions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the reaction between [ReN(H2O)-(CN)4]2− with different κ2 N,O-donor ligands (quin and 2,3-dipic, respectively) have been studied in the pH 4–12 range in aqueous solution. Two consecutive reaction steps with the formation of the [ReN(η1-quin)(CN)4]3− and [ReN(μ2-quin) (CN)3]2− complexes, respectively, were spectrophotometrically observed and kinetically investigated. The same reaction mechanism is proposed for these two ligands. The first fast reaction (for quin) is attributed to the aqua substitution of [ReN(H2O)(CN)4]2− with forward and reverse rate constants of 1.96(5) × 10−1 M−1 s−1 and 5.6(3) × 10−2 s−1, while a rate of 2.64(3) M−1 s−1 was observed for the reaction between the conjugate base [ReN(OH)(CN)4]3− and quin at 40.2 °C. Due to small absorbance changes, it was difficult to obtain any good quality data for the fast reactions for 2,3-dipic. The second, slower reaction is attributed to cyano substitution with rate constants (k 3 K 1) of 4.17(4) × 10−3 for quin and 4.68(7) × 10−3 M−1 s−1 for 2,3-dipic, at 80.02 °C, respectively. The acid dissociation constant for the aqua complex was spectrophotometrically determined as 11.58(3) and 11.54(2) and kinetically as 11.51(8) and 11.41(1), at 80.4 °C, respectively. Negative \(\Updelta{S}^{\neq}\) values of −83.5(2) and −144.1(2) J K−1 mol−1 as well as the \(\Updelta {H}^{\neq}\) of 71.4(3) and 47.3(3) kJ mol−1, for the slow quin and 2,3-dipic reactions, respectively, point to an ordered transition state where bond formation is responsible for the major driving force of the reaction. The \(\Updelta{H}^{\neq}=39.6(2)\,\hbox{kJ}\,\hbox{mol}^{-1}\) and \(\Updelta{S}^{\neq}=-142.8(1)\,\hbox{J\,K}^{-1}\,\hbox{mol}^{-1}\) for the fast forward reaction of quin is indicative of expected associative activation in the transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leipoldt JG, Basson SS, Roodt A, Purcell W (1992) Polyhedron 11:2277

    Article  CAS  Google Scholar 

  2. Samotus A, Szklarzewicz J (1993) Coord Chem Rev 125:63

    Article  CAS  Google Scholar 

  3. Leipoldt JG, Basson SS, Roodt A (1993) In: Sykes AG (ed) Advances in inorg. chem, vol 40, p 241

  4. Kanas A, Dudek M, Samotus A (1976) Bull Acad Polon Sci Ser Sci Chim 24:43

    CAS  Google Scholar 

  5. Roodt A, Leipoldt JG, Basson SS, Potgieter IM (1988) Transition Met Chem 13:336

    Article  CAS  Google Scholar 

  6. Roodt A, Leipoldt JG, Deutsch EA, Sullivan JC (1992) Inorg Chem 31:1080

    Article  CAS  Google Scholar 

  7. Purcell W, Roodt A, Basson SS, Leipoldt JG (1991) Transition Met Chem 16:60

    Article  CAS  Google Scholar 

  8. Damoense LJ, Purcell W, Leipoldt JG (1994) Transition Met Chem 19:619

    Article  CAS  Google Scholar 

  9. Wieghardt K, Backes-Dahman G, Holzbach WJ, Swiridoff WJ, Weiss J (1983) Z Anorg Allg Chem 499 :44

    Article  CAS  Google Scholar 

  10. Basson SS, Leipoldt JG, Potgieter IM, Roodt A (1985) Inorg Chim Acta 103:121

    Article  CAS  Google Scholar 

  11. Leipoldt JG, Basson SS, Roodt A, Potgieter IM (1986) S Afr J Chem 39:179

    CAS  Google Scholar 

  12. Roodt A, Leipoldt JG, Basson SS, Potgieter IM (1990) Transition Met Chem 15:439

    Article  CAS  Google Scholar 

  13. Purcell W, Damoense LJ, Leipoldt JG (1992) Inorg Chim Acta 195:217

    Article  CAS  Google Scholar 

  14. Purcell W, Potgieter IM, Damoense LJ, Leipoldt JG (1991) Transition Met Chem 16:473

    Article  CAS  Google Scholar 

  15. Basson SS, Leipoldt JG, Potgieter IM (1984) Inorg Chim Acta 90:57

    Article  CAS  Google Scholar 

  16. Samotus A, Szklarzewicz J, Alcock NW (1990) Inorg Chim Acta 172:129

    Article  CAS  Google Scholar 

  17. Leipoldt JG, Basson SS, Roodt A, Potgieter IM (1986) Transition Met Chem 11:323

    Article  CAS  Google Scholar 

  18. Roodt A, Basson SS, Leipoldt JG (1994) Polyhedron 13:599

    Article  CAS  Google Scholar 

  19. Leipoldt JG, Basson SS, Potgieter IM, Roodt A (1987) Inorg Chem 26:57

    Article  CAS  Google Scholar 

  20. Samotus A, Kanas A, Glug W, Szklarzewicz J (1991) Transition Met Chem 16:614

    Article  CAS  Google Scholar 

  21. Mtshali TN, Purcell W, Visser HG, Basson SS (2006) Polyhedron 25:2415

    Article  CAS  Google Scholar 

  22. Okobu N, Muranishi Y (2003) Acta Cryst C59:m228

    Google Scholar 

  23. Zhang H-T, Chen Y-Q, Xu L, You X-Z (2003) Acta Cryst C59:m373

    CAS  Google Scholar 

  24. Zhang H-T, You X-Z (2003) Acta Cryst C59:m313

    CAS  Google Scholar 

  25. Xiang J-F, Li M, Wu S-M, Yuan L-J, Sun J-T (2006) Acta Cryst C62:m122

    Google Scholar 

  26. Mtshali TN, Purcell W, Visser HG, Basson SS (2007) Acta Cryst E63:m1037

    CAS  Google Scholar 

  27. Johnson NP (1969) J Chem Soc A 1843

  28. Purcell W, Potgieter IM, Damoense LJ, Leipoldt JG (1992) Transition Met Chem 17:387

    Article  CAS  Google Scholar 

  29. Mtshali TN, Purcell W, Visser HG, Basson SS (to be published)

  30. Martell EA, Smith RM (1982) Critical stability constants. Plenum Press, p 129

  31. Harmon KM, Brown PW, Gill SH (1988) J Mol Struct 448:43

    Article  Google Scholar 

  32. Margerum DW, Caley GR, Weatherburn DC, Pakenkopf GW (1978) Coord Chem 2, Am Chem Soc 42

  33. Purcell W, Roodt A, Basson SS, Leipoldt JG (1989) Transition Met Chem 14:224

    Article  CAS  Google Scholar 

  34. Purcell W, Roodt A, Leipoldt JG (1991) Transition Met Chem 16:339

    Article  CAS  Google Scholar 

  35. Purcell W, Roodt A, Basson SS, Leipoldt JG (1989) Transition Met Chem 14:5

    Article  CAS  Google Scholar 

  36. Purcell W, Roodt A, Basson SS, Leipoldt JG (1990) Transition Met Chem 15:239

    Article  CAS  Google Scholar 

  37. Manoli J-M, Potvin C, Bregeault J-M (1980) Dalton Trans 192

Download references

Acknowledgment

The authors thank the Andrew Mellon Foundation (T.N. Mtshali) and Research Fund of the University of the Free State for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Purcell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC (77 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mtshali, T.N., Purcell, W., Visser, H.G. et al. Kinetic study of reaction of [ReN(H2O)(CN)4]2− with quinoline-2-carboxylate and pyridine-2,3-dicarboxylate anions. Transition Met Chem 33, 481–491 (2008). https://doi.org/10.1007/s11243-008-9068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9068-9

Keywords

Navigation