Skip to main content
Log in

Biophysical, spectroscopic and biochemical investigation of DNA–Cu(II)-GSH interactions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The interaction of DNA with Copper(II)-Glutathione (CuGSH) has been investigated by various biophysical methods. The interaction ratio of DNA and Copper(II)-Glutathione in solution phase has been determined spectrophotometrically and found to be 0.25. EPR spectroscopy and UV–Vis findings suggest that Cu(II)-Glutathione neither bound to the DNA bases covalently nor intercalated, this has further been substantiated by the determination of intrinsic binding constant (2.1 × 102). Viscometric measurements also support this type of binding to DNA by Cu(II)-Glutathione. EPR studies and visible d–d spectra of CuGSH after interaction with DNA, suggested that Copper remained in the Copper(II) state. DNA conformations after interaction with Cu(II)-Glutathione has been determined spectroscopically. Circular dichroism studies revealed that the B conformation of DNA is changed to A after interaction with Cu(II)-Glutathione. This has further been substantiated by thin film IR (Infrared) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.  8

Similar content being viewed by others

References

  1. Wang AHJ, Quigley GJ, Kolpak FJ (1981) Science 211:171

    Article  CAS  Google Scholar 

  2. Wang AHJ, Quigley GJ, Kolpak FJ, Grawford JL, Van Boom JH, Mareland GV, Rich A (1979) Nature 282:680

    Article  CAS  Google Scholar 

  3. Berger I, Winston W, Manoharan R, Schwartz T, Alfken J, Kim YG, Lowenhaupt K, Herbert A, Rich A (1998) Biochemistry 37:13313

    Article  CAS  Google Scholar 

  4. Neault JF, Tajmir-Riahi HA (1998) J Phys Chem B 102:1610

    Article  CAS  Google Scholar 

  5. Mefail-Isom L, Shuiand X, Williams LD (1998) Biochemistry 37:17105

    Article  Google Scholar 

  6. Miduturu CV, Silverman SK (2006) Angew Chem Ed 45:1918

    Article  CAS  Google Scholar 

  7. Murphy CJ, Arkin MR, Jenkis Y, Ghatlia ND, Bossman-Turro NJ, Barton JK (1993) Science 262:1025

    Article  CAS  Google Scholar 

  8. Yan CX, Wei YB, Yang P (2006) Chinese J Chem 24:1006

    Article  Google Scholar 

  9. Zhao Y, Zhu J, He W, Yang Z, Zhu Y, Li Y, Zhang J, Guo Z (2006) Chemistry Euro J 12:6621

    Article  CAS  Google Scholar 

  10. Arkin MR, Stemp EDA, Holmlin RE, Barton JK, Hormann A, Olson EJC, Barbara PF (1996) Science 273:475

    Article  CAS  Google Scholar 

  11. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777

    Article  CAS  Google Scholar 

  12. Shen D, Dalton TP, Nebert DW, Shertzer HG (2005) J Biol Chem 280:25305

    Article  CAS  Google Scholar 

  13. Arrigo AP (1999) Free Radic Biol Med 27:936

    Article  CAS  Google Scholar 

  14. Sen CK, Sies H, Baeuerle PA (1999) Antioxidant and redox regulation of genes. Academic press, San Diego

    Google Scholar 

  15. Tormos C, Chaves F, Garcia MF, Garrido F, Jover R, O’Connor JE, Oliva A, Saez GT (2004) Cancer Lett 208:103

    Article  CAS  Google Scholar 

  16. Martin MB, Reiter R, Pham T, Avetecost YR, Pratap K, Gilmore BA, Divekar S, Dagata RS, Bull JL, Stoica A (2003) Endocrinology 144:2425

    Article  CAS  Google Scholar 

  17. Ivanov AV, Korneeva EV, Gerasimenko AV, Forsling W (2005) Russ J Coord Chem 31:695

    Article  CAS  Google Scholar 

  18. Hu S, Furst P, Hamer D (1990) New Biol 2:544

    CAS  Google Scholar 

  19. Prutz WA (1994) Biochem J 302:373

    Google Scholar 

  20. Mukherjea KK, Panda G (2004) J Indian Chem Soc 81:210

    CAS  Google Scholar 

  21. Chaires JB, Dattagupta N, Crothers DM (1982) Biochemistry 21:933

    Google Scholar 

  22. Muller W, Crothers DM (1968) J Mol Biol 35:252

    Article  Google Scholar 

  23. Aboukaïs A, Abi-Aad E, Bennani A, Chachaty C, Bonnelle JP (1995) J Chem Soc Faraday Trans 91:3299

    Article  Google Scholar 

  24. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319

    Article  CAS  Google Scholar 

  25. Tinoco I, Bustamante JC, Maestre MF (1980) Annu Rev Biophys Bioeng 9:107

    Article  CAS  Google Scholar 

  26. Maestre MF (1970) J Mol Biol 52:543

    Article  CAS  Google Scholar 

  27. Olmsted J, Kearns DR (1977) Biochemistry 16:3647

    Article  CAS  Google Scholar 

  28. Reinert KK (1972) J Mol Biol 72:593

    Article  CAS  Google Scholar 

  29. Dirico DE, Keller JPB, Hartman KA (1985) Nucleic Acids Res 13:251

    Article  CAS  Google Scholar 

  30. Mukherjea KK, Bhattacharyya RG (1993) J Inorg Biochem 52:27

    Article  CAS  Google Scholar 

  31. Reed CJ, Douglas KT (1991) Biochem J 275:601

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grants Commission, New Delhi for financial assistance to K.K.M in the form of a MRP NO F-12-10/98 (SR-I), where GP had been a project fellow. We are also thankful to Jadavpur University for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan K. Mukherjea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjea, K.K., Panda, G. & Selim, M. Biophysical, spectroscopic and biochemical investigation of DNA–Cu(II)-GSH interactions. Transition Met Chem 33, 203–210 (2008). https://doi.org/10.1007/s11243-007-9034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-9034-y

Keywords

Navigation