Skip to main content

Novel vic-dioxime ligands and their poly-metal complexes bearing 1,8-diamino-3,6-dioxaoctane: synthesis, characterization, spectroscopy and electrochemistry

Abstract

Three novel vic-dioxime ligands containing the 1,8-diamino-3,6-dioxaoctane group, N,N′-(1,8-diamino-3,6-dioxaoctane)-p-tolylglyoxime (L1SL1H4), N,N′-(1,8-diamino-3,6-dioxaoctane)-phenylglyoxime (L2SL2H4), and N,N′-(1,8-diamino-3,6-dioxaoctane)-glyoxime (L3SL3H4) have been prepared from 1,8-diamino-3,6-dioxaoctane with anti-p-tolylchloroglyoxime, anti-phenylchloroglyoxime or anti-monochloroglyoxime. Polynuclear complexes [M(LxSLx)] n or [M(LxSLx)(H2O)] n (x = 1, 2 and 3), where M = CuII, CoII, and NiII, have been obtained with 1:1 metal/ligand ratio. The CuII and NiII poly-metal complexes of these ligands are proposed to be square planar, while also the prepared CoII complexes are proposed to be octahedral with two water molecules as axial ligands. The detection of H-bonding in the [Ni(L1SL1)] n , [Ni(L2SL2)] n and [M(L3SL3)(H2O)] n metal complexes by FT i.r. spectra revealed the square planar or octahedral [MN4·H2O)] n coordination of poly-nuclear metal complexes. [MN4] n coordination of the [Ni(L1SL1)] n and [Ni(L2SL2)] n complexes were also determined by 1H-n.m.r. spectroscopy. The ligands and poly-metal complexes were characterized by elemental analyses, FT-i.r., u.v.-vis., 1H and 13C-n.m.r. spectra, magnetic susceptibility measurements, molar conductivity, cyclic voltammetry, and differential pulse voltammetric (DPV) techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Vural US, Sevindir HC (1994) Macromol Rep A 31(Suppl 5):673

    Google Scholar 

  2. Mehrotra RC (1988) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry, vol 2. Pergamon Press, New York, p 269

    Google Scholar 

  3. Chakravorty A (1974) Coord Chem Rev 13:1

    Article  CAS  Google Scholar 

  4. Hendricks HM, Birker PJMWL, Vanrijn J, Veschoor GC, Reedijk J (1982) J Am Chem Soc 104:3067

    Google Scholar 

  5. Gagne RR, Allison JL, Gall RS, Koval CA (1997) J Am Chem Soc 99:7170

    Article  Google Scholar 

  6. Dagdigian JV, Reed CA (1979) Inorg Chem 18:2623

    Article  CAS  Google Scholar 

  7. Leonardo JP, Novotnik DP, Neirinckx RD (1986) J Nucl Med 27:1819

    Google Scholar 

  8. Dilwort JR, Parrott SJ (1998) Chem Soc Rev 27:43

    Article  Google Scholar 

  9. Hall IH, Bastow KF, Warren AE, Barnes CR, Bouet GM (1999) Appl Organometal Chem 13:819

    Article  CAS  Google Scholar 

  10. Lukevics E, Abele R, Fleisher M, Popelis J, Abale E (2003) J Mol Catal A-Chem 198:89

    Article  CAS  Google Scholar 

  11. Sellman D, Utz J, Heinemann FW (1999) Inorg Chem 38:459

    Article  Google Scholar 

  12. Laranleira MCM, Marusak RA, Lappin AG (2000) Inorg Chim Acta 186:300

    Google Scholar 

  13. Ohta K, Hisaghi R, Kejima MI, Yamamoto I, Kobayashi N (1998) J Mater Chem 8:1979

    Article  CAS  Google Scholar 

  14. Kumar S, Singh R, Singh H (1992) J Chem Soc Perkin Trans 1:3049

    Article  Google Scholar 

  15. Muller JG, Takeuchi KJ (1990) Inorg Chem 29:2185

    Article  CAS  Google Scholar 

  16. Bond AM, Khalifa M (1988) Aust J Chem 41:1389

    Article  CAS  Google Scholar 

  17. Brown BG (1973) Prog Inorg Chem 18:17

    Google Scholar 

  18. Özkaya AR, Okur AI, Gül A, Bekaroğlu Ö (1994) J Coord Chem 33:311

    Article  Google Scholar 

  19. (a) Loret FL, Ruiz R, Cervera B, Castro I, Julve M, Faust J, Real JA, Sapina F, Journaux Y, Colin JC, Vandager M (1994) J Chem Soc Chem Commun 2615. (b) Luneau D, Oshio H, Okawa H Kida S (1990) J Chem Soc Dalton Trans 2283. (c) Kilic A, Tas E, Gumgum B, Yilmaz I (2007) J Coord Chem 60(11):1233

  20. . Britzingen H, Titzmann R (1952) Ber Dtsch Chem Ges 85:345

    Google Scholar 

  21. Panzio G, Baldracco F (1930) Gazz Chim İtal 60:415

    Google Scholar 

  22. Earnshaw A (1968) Introduction to magnetochemistry. Acedemic Press, London, p 4

    Google Scholar 

  23. Gul A, Bekaroglu O (1983) J Chem Soc Dalton Trans 2537

  24. Kilic A, Tas E, Gumgum B, Yilmaz I (2006) Trans Met Chem 31:645

    Article  CAS  Google Scholar 

  25. Sevindir HC, Ersöz M, Mirzaoğlu R (1994) Synth React Inorg Metal-Org Chem 24(3):419

    Article  CAS  Google Scholar 

  26. Kandaz M, Katmer O, Koca A (2006) Trans Met Chem 31:889

    Article  CAS  Google Scholar 

  27. Gök Y, Kantekin H, Alp H, Ozdemir M (1995) Z Anorg Allg Chem 621:1237

    Article  Google Scholar 

  28. (a) Kumar KN, Ramesh R (2005) Polyhedron 24:1885; (b) Temel H, İlhan S, Aslanoglu M, Kilic A, Tas E (2006) J Chin Chem Soc 53:1027

  29. Ali SA, Soliman AA, Aboaly MM, Ramadan RM (2002) J Coord Chem 55:1161

    Article  CAS  Google Scholar 

  30. Kandaz M, Koca A, Özkaya AR (2004) Polyhedron 23:1987

    Article  CAS  Google Scholar 

  31. Gök Y, Bilgin A, Ertepinar H, Nisanoglu E (2000) Indian J Chem 39A:1280

    Google Scholar 

  32. Kilic A, Tas E, Gumgum B, Yilmaz I (2006) Chinese J Chem 24:1599

    Article  CAS  Google Scholar 

  33. Sacconi L, Ciampolini M, Maffio F, Cavasino FP (1962) J Am Chem Soc 84:3245

    Article  Google Scholar 

  34. Carlin RL (1965) Trans Met Chem, vol 1. Marcel Dekker, New York

    Google Scholar 

  35. Fraser C, Bosnich B (1994) Inorg Chem 33:338

    Article  CAS  Google Scholar 

  36. (a) Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam; (b) Tas E, Kasumov VT, Sahin O, Ozdemir M (2002) Trans Met Chem 27:442

  37. Larrow JF, Jacobsen EN, Gao Y, Hong Y, Nie X, Zepp CM (1994) J Org Chem 59:1939

    Article  CAS  Google Scholar 

  38. (a) Maki G (1958) J Phys Chem 28:651; (b) Gary H, Ballhausen CJ (1963) J Am Chem Soc 85:260

  39. (a) Ahsen V, Kürek A, Gül A, Bekaroğlu Ö (1990) J Chem Soc Dalton Trans 5; (b) Ahsen V, Bekaroğlu Ö (1985) Synth React Inorg Met-Org Chem 15:61; (c) Sing AN, Chakravorty A (1980) Inorg Chem 19:969

  40. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley-İnterscience Publication, p 725

  41. Tas E, Cukurovali A, Kaya M (1998) J Coord Chem 44:109

    CAS  Google Scholar 

  42. Dutta RL (1981) Inorganic chemistry, part II, 2nd edn. The New Book Stall, Calcutta, p 386

    Google Scholar 

  43. Kilic A, Tas E, Gumgum B, Yilmaz I (2006) Polish J Chem 80:1967

    CAS  Google Scholar 

  44. Tas E, Ulusoy M, Guler M, Yilmaz I (2004) Trans Met Chem 29:180

    Article  CAS  Google Scholar 

  45. Kandaz M, Yilmaz I, Keskin S, Koca A (2002) Polyhedron 21:825

    Article  CAS  Google Scholar 

  46. Kandaz M, Coruhlu SZ, Yilmaz I, Ozkaya AR (2002) Trans Met Chem 27:877

    Article  CAS  Google Scholar 

  47. Yilmaz I, Kandaz M, Özkaya AR, Koca A (2002) Monatsh Chem 133:609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work have been supported, in part, by the Research Fund of Harran University (Sanliurfa, Turkey). This work has also been supported, in part, by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (TÜBA-GEBİP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kilic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kilic, A., Durgun, M., Tas, E. et al. Novel vic-dioxime ligands and their poly-metal complexes bearing 1,8-diamino-3,6-dioxaoctane: synthesis, characterization, spectroscopy and electrochemistry. Transition Met Chem 33, 29–37 (2008). https://doi.org/10.1007/s11243-007-9010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-9010-6

Keywords

  • Copper Complex
  • Molar Conductivity
  • Cyclic Voltammetric
  • Cathodic Peak Potential
  • Differential Pulse Voltammetric