Skip to main content
Log in

Synthesis, spectral characterization, catalytic and antibacterial activity of macrocyclic CuII compounds

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Macrocyclic CuII compounds of the type Cu(L4)Cl2 (where L4 = N4 or N2O2 donor macrocyclic ligand) have been synthesized by treating the corresponding macrocycles with copper chloride in methanol. These compounds were characterized with the help of elemental analysis, i.r., mass, ESR, electronic spectra, conductance, magnetic and thermal studies. Distorted octahedral geometry has been proposed for all of these compounds. These compounds were found to be efficient in the catalytic oxidation of ascorbic acid and the percentage yields of oxidation products were determined spectrophotometrically. The biological activities of these compounds have been tested against gram +ve and gram −ve bacteria and found to be more active when compared with commercially available antibacterials like streptomycin and ampicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu G., Zhang Z.D., Hu L. and Song J.M. (2005). Transition Met. Chem. 30: 856

    Article  CAS  Google Scholar 

  2. M. Rosignoli, P.V. Bernhardt, G.A. Lawrence and M. Maeder, J. Chem. Soc. Dalton Trans, 323 (1997).

  3. Niasari M.S. and Amiri A. (2005). J. Mol. Cat. A 235: 114

    Article  CAS  Google Scholar 

  4. Singh D.P., Kumar R. and Tyagi P. (2006). Transition Met. Chem. 31: 970

    Article  CAS  Google Scholar 

  5. Shakir M., Nasman O.S.M. and Varkey S.P. (1996). Polyhedron 15: 309

    Article  CAS  Google Scholar 

  6. Nasman O.S.M. (2001). Synth. React. Inorg. Met. Org. Chem. 31: 1433

    Article  CAS  Google Scholar 

  7. Shakir M., Chishti H., Azim Y. and Begum N. (2004). Synth. React. Inorg. Met. Org. Chem. 34: 809

    Article  CAS  Google Scholar 

  8. Khan T.A., Tabassum S., Azim Y. and Shakir M. (2004). Synth. React. Inorg. Met. Org. Chem. 34: 1305

    Article  CAS  Google Scholar 

  9. Shakir M., Chishti H.T.N. and Chingsubam P. (2006). Spectrochim. Acta. A 64: 512

    Article  CAS  Google Scholar 

  10. Shakir M., Azim Y., Chishti H.T.N. and Parveen S. (2006). Spectrochim. Acta (A) 65: 490

    Article  CAS  Google Scholar 

  11. Ashok M., Ravinder V. and Prasad A.V.S.S. (2007). Transition Met. Chem. 32: 23

    Article  CAS  Google Scholar 

  12. Schumann H., Ravindar V., Meltser L., Baidossai W., Sasson Y. and Blum J. (1997). J. Mol. Cat. A 118: 55

    Article  CAS  Google Scholar 

  13. Ravindar V., Hemling H., Schumann H., Baidossai W. and Blum J. (1993). J. Mol. Cat. A 85: 1603

    Google Scholar 

  14. Ravinder V., Narasaiah V., Rao A.B. and Reddy P.M. (2006). J. Ind. Council. Chem. 24: 1

    Google Scholar 

  15. Esteban M.R. and Ho C.N. (1997). Microchem. J. 56: 122

    Article  CAS  Google Scholar 

  16. Vogel’s, Text Book of Quantitative Chemical Analysis, 6th edit., Pearson Edu., India, 2004

  17. Okawa H., Nishio J., Ohoba M., Tadokoro M., Matumast sumoto N., Koikawa M., Kaida S. and Fenton D.E. (1993). Inorg. Chem 32: 2949

    Article  CAS  Google Scholar 

  18. Bharati N., Sharma S.S., Naqvi F. and Azam A. (2003). Bioinorg. Med. Chem. 11: 2923

    Article  CAS  Google Scholar 

  19. Hamciuc C., Hamciuc E., Bruma M., Klapper M. and Pakula T. (2001). Polymer Bull. 47: 1

    Article  CAS  Google Scholar 

  20. Mishra L. and Upadhyay K.K. (1992). Ind. J. Chem. 31: 169

    Google Scholar 

  21. Keypour H., Salehzadeh S., Pritchard R.G. and Parish R.V. (2001). Molecules 6: 909

    Article  CAS  Google Scholar 

  22. Mikulski C.M., Mattucci L., Smith Y., Tran T.B. and Karayannis N.M. (1983). Inorg. Chim. Acta 80: 127

    Article  CAS  Google Scholar 

  23. S. Chandra and S. Gupta, J. Ind. Chem. Soc. 1087, (2005).

  24. Geary W.J. (1971). Coord. Chem. Rev. 7: 81

    Article  CAS  Google Scholar 

  25. Banci L., Bencini A., Benelli C., Gatteschi D. and Zanchini C. (1982). Struct. Bond. 52: 38

    Google Scholar 

  26. Allan J.R. and Veitch T.M. (1983). J. Therm. Anal. 27: 3

    Article  CAS  Google Scholar 

  27. Colak A.T., Tumer M. and Serin S. (2000). Transit. Met. Chem. 25: 200

    Article  CAS  Google Scholar 

  28. Choi S.N., Menzil E.R. and Walson J.R. (1977). J. Inorg. Nucl. Chem. 39: 417

    Article  CAS  Google Scholar 

  29. Cushine T.P.T. and Lamb A.J. (2005). Inter. J. Antimicrob. Agents 26: 343

    Article  CAS  Google Scholar 

  30. Malue M., Bastide J.M. and Biancard A. (2005). Inter. J. Antimicrob. Agents 25: 321

    Article  CAS  Google Scholar 

  31. Strizhak P.E., Basylchuk A.B., Demjanchyk I., Fecher F., Schneiderb F.W. and Munsterb A.F. (2000). Chem. Phys. 2: 4721

    Article  CAS  Google Scholar 

  32. Lambeir A.M., Dunford H.B. and Pickard M.A. (1987). Euro. J. Biochem. 163: 123

    Article  CAS  Google Scholar 

  33. Noroozifar M., Motlagh M.K. and Farahmanda A.R. (2004). Acta Chim. Slov. 51: 717

    CAS  Google Scholar 

  34. Noroozifar M. and Motlagh M.K. (2003). Turk. J. Chem. 27: 717

    CAS  Google Scholar 

  35. Fresenius G.S. (1947). J. Anal. Chem. 265: 5

    Google Scholar 

  36. Deutsch J.C. (1998). Anal. Biochem. 255: 1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadde Ravinder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, P.M., Prasad, A.V.S.S. & Ravinder, V. Synthesis, spectral characterization, catalytic and antibacterial activity of macrocyclic CuII compounds. Transition Met Chem 32, 507–513 (2007). https://doi.org/10.1007/s11243-007-0205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-0205-7

Keywords

Navigation