Skip to main content
Log in

Ruthenium(III) catalysis in the reaction of hexacyanoferrate(III) and iodide ions in perchloric acid medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

RuCl3 can further catalyze the reaction between hexacyanoferrate(III) and iodide ions, which is already catalyzed by the hydrogen ions obtained from perchloric acid. Rate, when the reaction is catalyzed only by the hydrogen ions, was separated graphically from the rate when ruthenium(III) and H+ ions both catalyze the reaction. Reactions studied separately in the presence as well as in the absence of RuCl3 under similar conditions were found to follow second order kinetics w.r.t. [I]. While the rate showed direct proportionality w.r.t. [Fe(CN)6]3− and [RuCl3]. At low concentrations the reaction shows direct proportionality with respect to [H+] which tends to become proportional to the square of hydrogen ion concentrations. External addition of [Fe(CN)6]4− ions retards the reaction velocity while change in ionic strength of the medium has no effect on the rate. With the help of the intercept of the catalyst graph, extent of the reaction, which takes place without adding ruthenium(III) was calculated and it was in accordance with the values obtained from the separately studied reaction in which only H+ ions catalyze the reaction. It is proposed that ruthenium forms a complex, which slowly disproportionates into the rate-determining step. Arrhenius parameters at four different temperatures were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.N. Singh A.C. Grover B.B.L. Saxena M.P. Singh (1969) Can. J. Chem. 47 1051 Occurrence Handle10.1139/v69-165 Occurrence Handle1:CAS:528:DyaF1MXos1Oqsg%3D%3D

    Article  CAS  Google Scholar 

  2. M.P. Singh H.S. Singh M.K. Verma (1980) J. Phys. Chem. 84 256 Occurrence Handle10.1021/j100440a006 Occurrence Handle1:CAS:528:DyaL3cXhtVSjt7w%3D

    Article  CAS  Google Scholar 

  3. (a) P.K. Tandon, Manibala, H.S. Singh and B. Krishna, Z. Phys. Chemie. Leipzig, 265, 609 (1984); (b) H.S. Singh, P.K. Tandon, B.K. Singh and A. Mehrotra, Proc. Indian Natn. Sci. Acad., 56 A, 447 (1990).

  4. Manibala P.K. Tandon B. Krishna (1985) Z. Phys. Chemie. Leipzig 266 1153 Occurrence Handle1:CAS:528:DyaL28XnsF2jsg%3D%3D

    CAS  Google Scholar 

  5. M.K. Verma P.K. Tandon M.P. Singh (1987) Z. Phys. Chemie. Leipzig 268 565 Occurrence Handle1:CAS:528:DyaL1cXnsVKjtw%3D%3D

    CAS  Google Scholar 

  6. P.K. Tandon B. Krishna (1985) Kinetics and Catalysis USSR 26 607 Occurrence Handle1:CAS:528:DyaL28XjtlOjsw%3D%3D

    CAS  Google Scholar 

  7. S. Wolfe, S.K. Hasan and J.R. Campbell, Chem. Commun., 1420 (1970)

  8. M.T. Nufiez V.S. Martin (1990) J. Org. Chem. 55 1928 Occurrence Handle10.1021/jo00293a044

    Article  Google Scholar 

  9. H.S. Singh A. Gupta A.K. Singh (1998) Transition Met. Chem. 23 277 Occurrence Handle10.1023/A:1015756732447

    Article  Google Scholar 

  10. H.S. Singh B. Singh A.K. Singh (1991) Carbohydr. Res. 211 235 Occurrence Handle10.1016/0008-6215(91)80094-4 Occurrence Handle1:CAS:528:DyaK3MXisVOmu7Y%3D

    Article  CAS  Google Scholar 

  11. P.M. Henry (1966) J. Am. Chem. Soc. 86 3246 Occurrence Handle10.1021/ja01070a009

    Article  Google Scholar 

  12. C. Wagner (1924) Z. Phys. Chem 113 261 Occurrence Handle1:CAS:528:DyaB2MXlsF2m

    CAS  Google Scholar 

  13. A. Kiss ParticleVon (1933) Rec. Trav. Chim 52 289 Occurrence Handle10.1002/recl.19330520404

    Article  Google Scholar 

  14. A. Indelli and G.C. Guaraldi, J. Chem. Soc., 36 (1964).

  15. H.B. Friedman B.E. Anderson (1939) J. Am. Chem. Soc. 61 116 Occurrence Handle10.1021/ja01870a039

    Article  Google Scholar 

  16. B. Krishna and H.S. Singh, Chemie Analytique, 48, 658 (1966); ibid., 49, 330 (1967).

  17. M. Grätzel (2001) Nature 414 338 Occurrence Handle10.1038/35104607

    Article  Google Scholar 

  18. M. Grätzel (2004) J. Photochem. Photobiol. A 164 3 Occurrence Handle10.1016/j.jphotochem.2004.02.023 Occurrence Handle1:CAS:528:DC%2BD2cXktFKqtbY%3D

    Article  CAS  Google Scholar 

  19. M. Grätzel (2005) Inorg. Chem. 44 6841 Occurrence Handle10.1021/ic0508371 Occurrence Handle1:CAS:528:DC%2BD2MXhtVGis77M

    Article  CAS  Google Scholar 

  20. M.K. Nazeeruddin A. Kay I. Rodicio R.H. Baker E. Müller P. Liska N. Vlachopoulos M. Grätzel (1993) J. Am. Chem. Soc. 115 6382 Occurrence Handle10.1021/ja00067a063 Occurrence Handle1:CAS:528:DyaK3sXkvVeku7o%3D

    Article  CAS  Google Scholar 

  21. S. Ferrere (2000) Chem. Mater. 12 1083 Occurrence Handle10.1021/cm990713k Occurrence Handle1:CAS:528:DC%2BD3cXhslentrw%3D

    Article  CAS  Google Scholar 

  22. S. Ferrere (2002) Inorg. Chim. Acta. 329 79 Occurrence Handle10.1016/S0020-1693(01)00743-5 Occurrence Handle1:CAS:528:DC%2BD38XhsFamsrk%3D

    Article  CAS  Google Scholar 

  23. S. Ferrere B.A. Gregg (1998) J. Am. Chem. Soc. 120 843 Occurrence Handle10.1021/ja973504e Occurrence Handle1:CAS:528:DyaK1cXms1Oqtg%3D%3D

    Article  CAS  Google Scholar 

  24. I. Stefanic K.-D. Asmus M. Bonifacic (2005) J. Phys. Org. Chem. 18 408 Occurrence Handle10.1002/poc.885 Occurrence Handle1:CAS:528:DC%2BD2MXjslaiu7w%3D

    Article  CAS  Google Scholar 

  25. X. Wang D.M. Stanbury (2004) J. Phys. Chem. A 108 7637 Occurrence Handle10.1021/jp046782q Occurrence Handle1:CAS:528:DC%2BD2cXmvFWmt74%3D

    Article  CAS  Google Scholar 

  26. X. Wang D.M. Stanbury (2006) Inorg. Chem. 45 3415 Occurrence Handle10.1021/ic052022y Occurrence Handle1:CAS:528:DC%2BD28XislCjtL8%3D

    Article  CAS  Google Scholar 

  27. P.K. Tandon (2003) Transition Met. Chem. 28 494 Occurrence Handle10.1023/A:1025049402032 Occurrence Handle1:CAS:528:DC%2BD3sXmtVWhsbo%3D

    Article  CAS  Google Scholar 

  28. P.K. Tandon A. Mehrotra A.K. Singh R. Baboo P.B. Dwivedi (2004) Int. J. Chem. Kinet. 36 545 Occurrence Handle10.1002/kin.20030 Occurrence Handle1:CAS:528:DC%2BD2cXns1OqsL0%3D

    Article  CAS  Google Scholar 

  29. (a) A.I. Vogel, Quantitative Inorganic Analysis, ELBS, London, 1961, p. 371.; (b) K.J. Laidler, Chemical Kinetics, TMH, NY, 1976, p. 11.

  30. (a) H.H. Cady and R.F. Connik, J. Am. Chem. Soc., 80, 2646 (1958); (b) R.F. Connik and D.A. Fine, J. Am. Chem. Soc., 83, 3416 (1961); (c) ibid., 82, 4187 (1960); (d) W.P. Griffith, The Chemistry of the Rare Platinum Metals, Interscience, NY, 1967, p. 141.

  31. (a) J. Halpern, B.H. Janes and A.L.W. Kemp, J. Am. Chem. Soc., 83, 4097 (1961); (b) J.F. Harrod, S. Coccone and J. Halpern, Can. J. Chem., 39, 1372 (1961).

  32. A.J. Elliot S. Geertsen G.V. Buxton (1988) J. Chem. Soc. Faraday Trans. I 84 1101 Occurrence Handle10.1039/f19888401101 Occurrence Handle1:CAS:528:DyaL1cXitFWisrc%3D

    Article  CAS  Google Scholar 

  33. J.L. Atwood S.G. Bott C.M. Means A.W. Coleman H. Zhangand M.T. May (1990) Inorg. Chem. 29 467 Occurrence Handle10.1021/ic00328a025 Occurrence Handle1:CAS:528:DyaK3cXptVahsA%3D%3D

    Article  CAS  Google Scholar 

  34. L.W. Schroeder J.A. Ibers (1968) Inorg. Chem. 7 594 Occurrence Handle10.1021/ic50061a042 Occurrence Handle1:CAS:528:DyaF1cXntlajtA%3D%3D

    Article  CAS  Google Scholar 

  35. M. Spiro, J. Chem. Soc., 3678 (1960) and refs cited therein.

  36. I.M. Kolthoff W.J. Tomsicek (1935) J. Phys. Chem. 39 955 Occurrence Handle10.1021/j150367a005 Occurrence Handle1:CAS:528:DyaA28XpvVOn

    Article  CAS  Google Scholar 

  37. (a) S. Prasad, Transition Met. Chem., 28, 1 (2003); (b) W.A. Eaton, P. George and G.I. Hanaria, J. Phys. Chem., 71, 2016 (1967).

  38. (a) J. Jordan and G.J. Ewing, Inorg. Chem., 1, 587 (1962); (b) L.D. Pedro, G. Begona and M.L. Jose, Can. J. Chem., 68, 228 (1990); (c) S.A. Chimatadar, M.S. Salunke and S.T. Nandibewoor, Transition Met. Chem., 29, 743 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Tandon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandon, P.K., Mehrotra, A., Srivastava, M. et al. Ruthenium(III) catalysis in the reaction of hexacyanoferrate(III) and iodide ions in perchloric acid medium. Transition Met Chem 32, 74–80 (2007). https://doi.org/10.1007/s11243-006-0136-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0136-8

Keywords

Navigation