Skip to main content
Log in

Synthesis, characterization, theoretical calculations and catalase-like activity of mixed ligand complexes derived from alanine and 2-acetylpyridine

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Mixed ligand complexes [M(2-AP)(Ala)Cl x · mH2O]nH2O, where (M = CoII, NiII, CrIII and FeIII, 2-AP = 2-acetylpyridine, Ala = alanine, x = 2–3, m = 0–1 and n = 3–5] are synthesized and characterized by elemental analysis, FTIR, UV/Vis., MS, TG, measurements and semi-empirical calculations ZINDO/1 and PM3. The results suggest an octahedral geometry for all isolated complexes. FTIR spectra show that alanine coordinates to the metal ions as a neutral unidentate through the amino nitrogen where 2-acetylpyridine coordinates to the metal ion in a bidentate manner through carbonyl oxygen and pyridyl nitrogen. Semi-empirical calculations have been used to study the molecular geometry and the harmonic vibrational spectra with the purpose to assist the experimental assignment of the complexes. The Fe complex showed significant activity as a catalase-like model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pasini L.J. Casella (1979) Inorg. Nucl. Chem. 36 2133 Occurrence Handle10.1016/0022-1902(74)80739-6

    Article  Google Scholar 

  2. C.R. Bhattacharjee P.K. Choudhury (2001) Transition Met. Chem. 26 730 Occurrence Handle10.1023/A:1012210617378 Occurrence Handle1:CAS:528:DC%2BD3MXosV2iu7g%3D

    Article  CAS  Google Scholar 

  3. L. Wang J. Cai Z.W. Mao X.L. Feng J.W. Huang (2004) Transition Met. Chem. 29 411 Occurrence Handle10.1023/B:TMCH.0000027461.08056.31 Occurrence Handle1:CAS:528:DC%2BD2cXjvVKns7c%3D

    Article  CAS  Google Scholar 

  4. M.M. Shoukry E.M. Khairy A.A. El-Sherif (2002) Transition Met. Chem. 27 656 Occurrence Handle10.1023/A:1019831618658 Occurrence Handle1:CAS:528:DC%2BD38Xmt1ymsL0%3D

    Article  CAS  Google Scholar 

  5. N. Grosser S. Oberle G. Berndt K. Erdmannk A. Hemmerle (2004) Biochem. Biophys. Res. Commun. 314 351 Occurrence Handle10.1016/j.bbrc.2003.12.089 Occurrence Handle1:CAS:528:DC%2BD2cXltFyntg%3D%3D

    Article  CAS  Google Scholar 

  6. D.E. Metzler (1957) J. Am. Chem. Soc. 79 485 Occurrence Handle10.1021/ja01559a068 Occurrence Handle1:CAS:528:DyaG2sXjtVagug%3D%3D

    Article  CAS  Google Scholar 

  7. W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, an Introduction and Guide, John Wiley & Sons, 1994

  8. R. Cammack (1988) Adv. Inorg. Chem. Radiochem. 32 297 Occurrence Handle1:CAS:528:DyaL1cXlt1Cksbo%3D Occurrence Handle10.1016/S0898-8838(08)60234-2

    Article  CAS  Google Scholar 

  9. D.E. Metzler (1957) J. Am. Chem. Soc. 79 485 Occurrence Handle10.1021/ja01559a068 Occurrence Handle1:CAS:528:DyaG2sXjtVagug%3D%3D

    Article  CAS  Google Scholar 

  10. N.A. Nawar A.M. Shallaby N.M. Hosny M.M. Mostafa (2001) Transition Met. Chem. 26 180 Occurrence Handle10.1023/A:1007172905500 Occurrence Handle1:CAS:528:DC%2BD3MXht1Sls70%3D

    Article  CAS  Google Scholar 

  11. T. Shoeib C.F. Rodriquez K.W.M. Siu A.C. Hopkinson (2001) Phys. Chem. Chem. Phys. 3 853 Occurrence Handle10.1039/b008836f Occurrence Handle1:CAS:528:DC%2BD3MXhtFyrtL0%3D

    Article  CAS  Google Scholar 

  12. P. Comba R. Remenyi (2003) Coord. Chem. Rev. 9 238

    Google Scholar 

  13. A. R. Leach, Molecular Modeling, Longman Edinburgh,1996

  14. A.K. Rappe C.J. Casewit (1997) Molecular Mechanics across Chemistry University Science Books Sausalito

    Google Scholar 

  15. J. Zupan J. Gasteiger (1993) Neural Networks for Chemists: an Introduction VCH Verlag New York, Weinheim

    Google Scholar 

  16. E. Stadtman P. Berlett P. Chock (1990) Proc. Natl. Acad. Sci. U.S.A. 87 384 Occurrence Handle10.1073/pnas.87.1.384 Occurrence Handle1:CAS:528:DyaK3cXnt1ymtg%3D%3D

    Article  CAS  Google Scholar 

  17. B. Halliwell J. Gutteridge (1990) Methods in Enzymology Academic Press San Diego

    Google Scholar 

  18. V. Daier H. Biava C. Palopoki S. Shova J. Tuchagues S. Signorella (2004) J. Inorg. Biochem 98 1806 Occurrence Handle10.1016/j.jinorgbio.2004.08.007 Occurrence Handle1:CAS:528:DC%2BD2cXptlOkt7g%3D

    Article  CAS  Google Scholar 

  19. J. Gao S.H. Zhong (2000) J. Mol. Cat. A: Chem. 186 25 Occurrence Handle10.1016/S1381-1169(02)00081-X

    Article  Google Scholar 

  20. L. Jose V.N.R. Pillai (1998) Polymer 39 231 Occurrence Handle10.1016/S0032-3861(97)00038-4

    Article  Google Scholar 

  21. Hyperchem 7, developed by Hypercube Inc. 2002

  22. W.J. Geary (1971) Coord. Chem. Rev. 7 81 Occurrence Handle10.1016/S0010-8545(00)80009-0 Occurrence Handle1:CAS:528:DyaE3MXlsVCgsrg%3D

    Article  CAS  Google Scholar 

  23. K. Nakamoto (1970) Infrared Spectra of Inorganic and Coordination Compounds John Wiley New York

    Google Scholar 

  24. S.K. Sahni S.K. Sangal S.P. Gupta V.B. Rana (1977) J. Inorg. Nucl. Chem. 39 1098 Occurrence Handle10.1016/0022-1902(77)80280-7 Occurrence Handle1:CAS:528:DyaE2sXmtFSgurY%3D

    Article  CAS  Google Scholar 

  25. J.R. Ferraro (1971) Low Frequency Vibrations of Inorganic and Coordination Compounds Plenum press New York

    Google Scholar 

  26. A.B.P. Lever (1986) Inorganic Electronic Spectroscopy Elsevier Amsterdam

    Google Scholar 

  27. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (A Comprehensive Text), 4th edit., John Wiley, New York, 1980

  28. S. Cakir E. Coskun P. Naumov E. Bicer (2001) J. Mol. Struc. 608 101 Occurrence Handle10.1016/S0022-2860(01)00939-5

    Article  Google Scholar 

  29. A.W. Coats J.P. Redfern (1964) Nature 20 68 Occurrence Handle10.1038/201068a0

    Article  Google Scholar 

  30. D. Kong J. Reibenspies A. Clearfield A.E. Martell (2004) Inorg. Chem. Commun. 7 195 Occurrence Handle10.1016/j.inoche.2003.05.001 Occurrence Handle1:CAS:528:DC%2BD2cXoslChtQ%3D%3D

    Article  CAS  Google Scholar 

  31. W.H. Chen H.H. Wei G.H. Lee Y. Wang (2001) Polyhedron 20 515 Occurrence Handle10.1016/S0277-5387(00)00656-2 Occurrence Handle1:CAS:528:DC%2BD3MXitFyktrY%3D

    Article  CAS  Google Scholar 

  32. A.G. Raso J.J. Fiol B. Adrover P. Tauler A. Pons I. Mata E.E. Spinosa E. Molins (2003) Polyhedron 22 3255 Occurrence Handle10.1016/S0277-5387(02)01364-5

    Article  Google Scholar 

  33. J. Gao A.E. Martell J.H. Reibenspies (2003) J. Inorg. Chim. Acta 346 23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Mohammed Hosny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosny, N.M. Synthesis, characterization, theoretical calculations and catalase-like activity of mixed ligand complexes derived from alanine and 2-acetylpyridine. Transition Met Chem 32, 117–124 (2007). https://doi.org/10.1007/s11243-006-0132-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0132-z

Keywords

Navigation