Skip to main content
Log in

Kinetic study of the promazine oxidation to promazine 5-oxide by trisoxalatocobaltate(III) in basic aqueous media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the oxidation of promazine by trisoxalatocobaltate(III) were studied in the presence of a large excess of the cobalt(III) in tris buffer solution using u.v.–vis spectroscopy ([CoIII] = (0.6 − 2) × 10−3 M, [ptz] = 6 × 10−5 M, pH = 6.6–7.8, I = 0.1 M (NaCl), T = 288−308 K, l = 1 cm). The reaction proceeds via two consecutive reversible steps. In the first step, the reaction leads to formation of cobalt(II) species and a stable cationic radical. In the second step, cobalt(III) is reduced to cobalt(II) ion and a promazine radical is oxidized to the promazine 5-oxide. Linear dependences of the pseudo-first-order rate constants (k 1 and k 2) on [CoIII] with a non-zero intercept were established for both redox processes. Rates of reactions decreased with increasing concentration of the H+ ion indicating that the promazine and its radical exist in equilibrium with their deprotonated forms, which are reactive reducing species. The activation parameters for reactions studied were as follows: ΔH = 44 ± 1 kJ mol−1, ΔS = −100 ± 4 JK−1 mol−1 for the first step and ΔH = 25 ± 1 kJ mol−1, ΔS = −169 ± 4 J K−1 mol−1 for the second step, respectively. Mechanistic consequences of all the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lüllmann, K. Mohr, A. Ziegler and D. Bieger, Color Atlas of Pharmacology, 2nd edit., Thieme, Stuttgart, 2000, p. 236.

  2. R.D. Cannon and J.S. Stillman, J. Chem. Soc., Dalton Trans., 428 (1976).

  3. M. Kimura, M. Yamamoto and S. Yarnabe, J. Chem. Soc., Dalton Trans., 423 (1982).

  4. Martinez P., Zuluaga J. and Kraft J. (1988). Inorg. Chim. Acta 146: 9

    Article  CAS  Google Scholar 

  5. J. Macyk and R. van Eldik, J. Chem. Soc., Dalton Trans., 2288 (2001).

  6. Z. Yang and E. Gould, J. Chem. Soc., Dalton Trans., 3601 (2004).

  7. Shriver D.F. and Atkins P.W. (1999). Inorganic Chemistry. Oxford University Press, Oxford, 693–714

    Google Scholar 

  8. J.A. Broomhead, I. Lauder and P. Nimmo, J. Chem. Soc. A, 645 (1971).

  9. J. Aggett and A. L. Odell, J. Chem. Soc. A, 1415 (1968).

  10. Bailar J.C. and Jones J.E.M. (1939). Inorg. Synth. 1: 35

    Google Scholar 

  11. Siebert H. (1959). Z. Anorg. Allg. Chem. 298: 51

    Article  Google Scholar 

  12. Tanaka N. and Shimura Y. (1967). Bull. Chem. Soc. Jpn. 40: 330

    Article  CAS  Google Scholar 

  13. Fujita J. and Shimura Y. (1963). Bull. Chem. Soc. Jpn. 36: 1281

    Article  CAS  Google Scholar 

  14. A. Mead, J. Phys. Chem., 1052 (1934).

  15. Pelizzetti E. and Mentasti E. (1979). Inorg. Chem. 18: 583

    Article  CAS  Google Scholar 

  16. Wilkins R.G. (1991). Kinetics and Mechanism of Reactions of Transition Metal Complexes. VCH, Weinheim, 18–21

    Google Scholar 

  17. Ortiz A., Poyato I. and Fernandez-Alonso J.I. (1983). J. Pharm. Sci 72: 50 apart from that molar absorption coefficients are incorrect

    Article  CAS  Google Scholar 

  18. Merkle F.H. and Discher C.A. (1964). Anal. Chem. 36: 1639

    Article  Google Scholar 

  19. Weast R.C. (2000). CRC Handbook of Chemistry and Physics. 1st Student Edit, CRC Press, Boca Raton, Florida, D-102

    Google Scholar 

  20. Hulshoff A. and Perrin J. (1976). Pharm. Acta Helv. 51: 65

    CAS  Google Scholar 

  21. Lappin A.G. (1980). Redox Mechanism in Inorganic Chemistry. Ellis Horwood, New York, 75

    Google Scholar 

  22. Warren R.M.L., Lappin A.G. and Tatehata A. (1992). Inorg. Chem. 31: 566

    Article  Google Scholar 

  23. J.O. Ehighaokhuo, J. F. Ojo and O. Olubuyide, J. Chem. Soc., Dalton Trans., 1665 (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Wiśniewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewska, J. Kinetic study of the promazine oxidation to promazine 5-oxide by trisoxalatocobaltate(III) in basic aqueous media. Transition Met Chem 32, 107–111 (2007). https://doi.org/10.1007/s11243-006-0130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0130-1

Keywords

Navigation