Skip to main content
Log in

Kinetic, solvation and reactivity studies of iron(II) complexes of monoxime and dioxime ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Complexes of FeII with monoxime and dioxime ligands have been isolated and characterised. Kinetic results and rate laws are reported for acid aquation and base hydrolysis of these complexes in H2O and in MeOH–H2O mixtures. Kinetics of acid catalysed aquation of FeII–monoxime complexes follow a rate law with kobs = k2[H+] + k3[H+]2, while kinetics of acid dissociation and base hydrolysis of the FeII–dioxime complex follow rate laws with kobs = k2[H+] and kobs = k2[OH]. Acid aquation and base hydrolysis mechanisms are proposed. The solubilities of FeII–monoxime and –dioxime complex salts are reported and transfer chemical potentials of their complex cations are calculated. Solvent effects on reactivity trends have been analysed into initial and transition state components. These are determined from transfer chemical potentials of reactant and kinetic data. Rate constant trends from these complexes are compared and discussed in terms of ligand structure and solvation properties. Our kinetic results give information relevant to the application of these ligands as analytical reagents for trace FeII in acidic and neutral media, in water and in aqueous alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Murmann E.A. Healy (1961) J. Am. Chem. Soc. 83 2092

    Google Scholar 

  2. L.F. Lindoy S.E. Livingston (1967) Coord. Chem. Rev. 2 173

    Google Scholar 

  3. P. Krumholz (1971) Struct. Bonding. 9 139

    Google Scholar 

  4. A.A Schilt (1969) Analytical Applications of 1,10-Phenanthroline and Related Compounds Pergamon Oxford.

    Google Scholar 

  5. Hanania G.I.H., Irvine D.H. (1962) J. Chem. Soc., 2745.

  6. Hanania G.I.H., Irvine D.H., Shurayh F. J. (1965). Chem. Soc., 1149.

  7. H. Hartkamp (1960) Fresenius Z. Anal. Chem. 19 178

    Google Scholar 

  8. E.I. Baucom R.S. Drago (1971) J. Am. Chem. Soc. 93 6469

    Google Scholar 

  9. M. Satake N. Sugita M. Katyal (1990) Ann. Chim. 80 385

    Google Scholar 

  10. M.J. Blandamer J. Burgess B. Clark P.P. Duce A.W. Hakin N. Gosal S. Radulović P. Guardado F. Sanchez C.D. Hubbard E.A. Abu-Gharib (1986) J. Chem. Soc., Faraday Trans. 1 IssueID82 1471

    Google Scholar 

  11. D.W. Margerum. J. Am. Chem. Soc. 79: 2728 (1957); J. Burgess R.H. Prince. J. Chem. Soc., 4697, (1965).

    Google Scholar 

  12. T.N. Sorrell (1997) Organic Chemistry University Science Books Sausalito

    Google Scholar 

  13. Lipschutz M.M. Schaum’s Outline of Theory and Problems of Differential Geometry, McGraw-Hill, New York, 1969; P.K. Jain and K. Ahmad. Analytical Geometry of Two Dimensions, 2nd edit., Wiley Eastern, India 1986.

  14. E.A. Abu-Gharib J. Burgess. Transition Met. Chem. 18: 623 (1993).

    Google Scholar 

  15. M.L. Tobe J. Burgess. Inorganic Reaction Mechanisms, Addison–Wesley–Longman, Harlow, 1999.

  16. J.D. Miller W.R. McWhinnie. Adv. Inorg. Chem. Radiochem. 12: 135 (1969).

  17. M.J. Blandamer J. Burgess. Coord. Chem. Rev. 31: 93 (1980).

    Google Scholar 

  18. J. Burgess M.V. Twigg. J. Chem. Soc. Dalton Trans., 2032 (1974).

  19. G.K. Pagenkopf D.W. Margerum (1968) Inorg. Chem. 7 2514

    Google Scholar 

  20. F.H. Fraser P. Esptein D.L. Macero (1972) Inorg Chem. 11 2031

    Google Scholar 

  21. Blandamer MJ., Burgess J., Haines RI., Mekhail F.M., Askalani P. J. Chem. Soc., Dalton Trans., 1001 (1978).

  22. I.L. Finar (1973) Organic Chemistry, Vol. 1 EditionNumber6 Longman London.

    Google Scholar 

  23. H. Hartkamp. Naturwissenschaften. 45: 211 (1958); H. Hartkamp. Z. Anal. Chem. 170: 399 (1959).

  24. S. Bolton (1963) J. Pharm. Sci. 52 858 Occurrence Handle14061045

    PubMed  Google Scholar 

  25. D.K. Banerjea K.K. Tripathi (1960) Analyt. Chem. 32 1196

    Google Scholar 

  26. B. Sen. Chem. Ind. (London), 562 (1958); F. Trusell H. Diehl. Analyt. Chem. 31: 1978 (1959).

  27. Serpone N., Ponterini G., Jamieson MA., F. Bolletta M.M. Maestri. Coord. Chem. Rev. 50: 209 (1983); Gillard RD., D.W. Knight P.A. Williams. Transition Met. Chem. 5: 321 (1980); R.D. Gillard. Coord. Chem. Rev. 50: 303 (1983); E.C. Constable. Polyhedron. 2: 551 (1983).

  28. R.D. Gillard. Coord. Chem. Rev. 16: 67 (1975); Blandamer MJ., J. Burgess E.A. Abu-Gharib. Transition Met. Chem. 9: 193 (1984).

  29. Sidahmed I.M., Wells C.F. J. Chem. Soc., Dalton Trans.. 10: 2034 (1981); J. Burgess E.A. Abu-Gharib. Transition Met. Chem. 9: 234 (1984); A.A. El-Samahy, E.A. Abu-Gharib, A. Eltaher, R.M. El-Khatib J. Burgess. Transition Met. Chem. 17: 438 (1992).

  30. MH. Abraham T. Hill HC. Ling R.A. Schulz R.A.C. Watt (1984) J. Chem. Soc., Faraday Trans 1 IssueID80 489

    Google Scholar 

  31. A. Al Alousy J. Burgess (1987) Transition Met. Chem. 12 565

    Google Scholar 

  32. S. Alshehri MJ. Blandamer J. Burgess P. Guardado C.D. Hubbard (1993) Polyhedron. 12 445

    Google Scholar 

  33. Krumholz P. Inorg. Chem. 9: 609 (1965); J. Burgess. J. Chem. Soc. (A), 497 (1968).

  34. A. Desoky (2003) MSc. Thesis. South Valley University Sohag Egypt

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Gharib, EE.A., Komy, Z., Eltaher, AE. et al. Kinetic, solvation and reactivity studies of iron(II) complexes of monoxime and dioxime ligands. Transition Met Chem 30, 357–366 (2005). https://doi.org/10.1007/s11243-004-6967-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-6967-2

Keywords

Navigation