Skip to main content
Log in

Reductivity of methanol and ethanol towards permanganate in absence and presence of Tween-20 in perchloric acid medium. Mechanism of the oxidation processes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The reducing behaviour of methanol and ethanol towards permanganate in perchloric acid medium have been investigated in the absence and presence of the surfactant Tween-20. In the absence of surfactant the reaction is of first order with respect to both oxidant and H+ but of complex order in substrate. The alcohol molecule reacts with HMnO4 to form an intermediate complex which decomposes in the rate-determining step to give the product and Mnv. Effects of urea and acetonitrile on the reaction rate have also been studied. In the presence of Tween-20, the reaction appears to follow Berezin’s model where both the oxidant and the substrate are partitioned between the aqueous and the micellar phase and then react. Different thermodynamic and kinetic parameters have been evaluated. The reaction in the presence of the surfactant is entropy-controlled rather than enthalpy-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Stewart, in: K.B. Wiberg (ed.) Oxidation in Organic chemistry, Academic Press, New York, 1965, Part A, p. 35.

  • F.C. Tompkins (1943) Trans. Faraday Soc. 39 280

    Google Scholar 

  • J.H. Merz G. Stafford W.A. Waters (1951) J. Am. Chem. Soc. 73 638

    Google Scholar 

  • K.B. Wiberg R. Stewart (1955) J. Am. Chem. Soc. 77 1786

    Google Scholar 

  • R. Stewert (1957) J. Am. Chem. Soc. 79 3057

    Google Scholar 

  • R. Stewert M.M. Mocek (1963) Can. J. Chem. 41 1160

    Google Scholar 

  • J.L. Kurz (1964) J. Am. Chem. Soc. 86 2229

    Google Scholar 

  • F. Freeman D.K. Lin G.R Moore (1982) J. Org. Chem. 47 56

    Google Scholar 

  • K.K. Banerji (1973) Bull. Chem. Soc. Jpn. 46 3623

    Google Scholar 

  • I. Bhatia K.K. Banerji (1983) J. Chem Soc., Perkin Trans. 2 1577

    Google Scholar 

  • R.M. Hasan, M. Mousa and M.H. Wahadan, J. Chem Soc., Dalton Trans., 605 (1988).

  • J.F. Perez-Benito R.M. Rodriguez J. Andres Particlede E. Brillas J. A. Garrido (1989) Int. J. Chem. Kinet. 21 71

    Google Scholar 

  • G. Sikander K.A.B. Ahamedi S. Kannan (1992) Inorg. Chem. 31 845

    Google Scholar 

  • K.K. Sen Gupta P.K. Sen G. Mukhopadhyay (1993) Transition Met. Chem. 18 369

    Google Scholar 

  • P.K. Sen A. Sanyal K.K. Sen Gupta (1995) Int. J. Chem. Kinet 27 379

    Google Scholar 

  • A. Arrizabalaga F.J.A. Ordax M.Y.F. Aranguiz R. Peche (1996) Int. J. Chem. Kinet. 28 799

    Google Scholar 

  • A. Arrizabalaga F.J.A. Ordax M.Y.F. Aranguiz R. Peche (1997) Int. J. Chem. Kinet. 29 181

    Google Scholar 

  • P.K. Sen G. Mukhopadhyay K.K. Sen Gupta (1998) Transition Met. Chem. 23 577

    Google Scholar 

  • P.K. Sen G. Mukhopadhyay N. Gani K.K. Sen Gupta (2001) Transition Met. Chem. 26 451

    Google Scholar 

  • M.N. Khan, J. Naaliya and M. Dahiru, J. Chem. Res. (S)., 116, (M) 1168 (1988).

  • G.P. Panigrahi and S.K. Misra, J. Chem, Res.(S)., 180, (M) 1259 (1990).

  • G.P. Panigrahi B.P. Sahu (1991) Int. J. Chem. Kinet. 23 989

    Google Scholar 

  • G. Calvaruso F.P. Cavasino C. Sbriziolo (1992) J. Chem. Soc., Faraday Trans. 88 1669

    Google Scholar 

  • H.A. Al-Lohedan, A.M. Al-Sulaim, A.S.Al-Ayed and Z.A. Issa, J. Chem. Res.(S)., 70, (M) 3101 (1993).

    Google Scholar 

  • P.K. Sen A Sanyal K.K. Sen Gupta (1993) J. Indian. Chem.Soc. 70 341

    Google Scholar 

  • M. Matha LB.T. Sundari K.C. Rajamma P.K. Saiprakash (1996) Int. J. Chem. Kinet. 28 637

    Google Scholar 

  • P.K. Sen P.S. Tribedi K.K. Sen Gupta (2000) J. Surface Sci. Technol. 16 220

    Google Scholar 

  • Vogel’s Textbook of Quantitative Inorganic Analysis, ELBS/Longman, 1986, p. 352.

  • F. Feigl (1956) Spot Tests in Organic Analysis EIsevier Amsterdam 434

    Google Scholar 

  • E.H. Huntress S.P. Mulliken (1953) Identification of Pure Organic Compounds John Wiley & Sons New York 43

    Google Scholar 

  • N. Bailey, A. Carrington, K.A.K. Lott and M.C.R. Symons, J. Chem. Soc., 290 (1960).

  • J.S. Littler, J. Chem. Soc., 2190 (1962).

  • K.K. Banerjee (1972) Z. Naturoforsch 27b 772

    Google Scholar 

  • S.S. Mohanty P. Mohanty (1997) J. Indian Chem. Soc. 74 604

    Google Scholar 

  • L.I. Simandi M. Jaky (1976) J. Am. Chem. Soc. 98 1995

    Google Scholar 

  • H. Iloukhani H. Bahrami (1999) Int. J. Chem. Kinet. 31 95

    Google Scholar 

  • K. Das A.K. Das K. Bose K.K. Kundu (1978) J. Phys. Chem. 82 1242

    Google Scholar 

  • F.M. Menger C.E. Portnoy (1967) J. Am. Chem. Soc. 89 4698

    Google Scholar 

  • I.V. Berezin K. Martinek A.K. Yatsimirskii (1973) Russ. Chem. Rev. (Eng. Trans.) 42 787

    Google Scholar 

  • F. Franks D.J.G. Ives (1966) Quart.Rev.Chem. Soc. 20 1

    Google Scholar 

  • J.B.F.N. Engberts J.J.H. Nusselder (1990) Pure Appl.Chem. 62 47

    Google Scholar 

  • R. Sinha K.K. Kundu (1998) Indian J. Chem. 37A 678

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, P.K., Samaddar, P.R. & Das, K. Reductivity of methanol and ethanol towards permanganate in absence and presence of Tween-20 in perchloric acid medium. Mechanism of the oxidation processes. Transition Met Chem 30, 261–267 (2005). https://doi.org/10.1007/s11243-004-6965-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-6965-4

Keywords

Navigation