Skip to main content
Log in

Kinetics and mechanism of a macrocyclic chromium(III) complex oxidation to chromium(IV) by hexacyanoferrate(III) in strongly alkaline media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)2]+, where cycb=rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate(III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates.

Kinetics of oxidation of the macrocyclic Cr(III) complex in alkaline solution has been studied under excess of the reductant. Rate determining formation of Cr(IV) by a second order process involving the Cr(III) and the Fe(III) reactants is seen. This reaction also involves a characteristic higher order than linear dependence on the hydroxide concentration. Reaction mechanisms for the processes, including oxidation of the coordinated macrocyclic ligand – under excess of the oxidant- are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Shriver and P.W. Atkins, Inorganic Chemistry, 3rd edit., Oxford University Press, 1999.

  2. S.J. Slattery, J.K. Blaho, J. Lehnes and K.A. Goldsby, Coord. Chem. Rev., 174, 391 (1998).

    Google Scholar 

  3. A. Levina, A.M. Bailey, G. Champion and P.A. Lay, J. Am. Chem. Soc., 122, 6208 (2000).

    Google Scholar 

  4. P. Belanzoni, M. Rosi, A. Sgamelloti, L. Bonomo and C. Floriani, J. Chem. Soc., Dalton Trans., 1492 (2001).

  5. A. Nemes and A. Bakac, Inorg. Chem., 40, 2720 (2001).

    PubMed  Google Scholar 

  6. O.A. Babich and E.S. Gould, ibid., 40, 5708 (2001).

    PubMed  Google Scholar 

  7. A.E. Meier-Callahan, A.J. Di Bilio, L. Simkhovich, A. Mahammed, I. Goldberg, H. Gray and Z. Gross, ibid., 40, 6788 (2001).

    PubMed  Google Scholar 

  8. A. Levina, L. Zhang and P.A. Lay, ibid., 42, 767 (2003).

    PubMed  Google Scholar 

  9. A. Levina, R. Codd, C.T. Dillon and P.A. Lay, Progr. Inorg. Chem., 51, 145 (2003).

    Google Scholar 

  10. E.S. Gould, Coord. Chem. Rev., 135/136, 651 (1994).

    Google Scholar 

  11. D.I. Pattison, P.A. Lay and M.J. Davies, Inorg. Chem., 39, 2729 (2000).

    PubMed  Google Scholar 

  12. H.A. Headlam and P.A. Lay, ibid., 40, 78 (2001).

    PubMed  Google Scholar 

  13. C.M. Cawich, A. Ibrahim, K.L. Link, A. Bumgartner, M.D. Patro, S.N. Mahapatro, P.A. Lay, A. Levina, S.S. Eaton and G.R. Eaton, ibid., 42, 6458 (2003).

    PubMed  Google Scholar 

  14. D.K. Geiger, Coord. Chem. Rev., 152, 359 (1996).

    Google Scholar 

  15. R. Rajan, N.B. Unni and T. Ramasami, Inorg. React. Mech., 1, 247 (2000).

    Google Scholar 

  16. T. Birk and J. Bendix, Inorg. Chem., 42, 7608 (2003).

    PubMed  Google Scholar 

  17. A. Malcolm and P.C. Ford, Coord. Chem. Rev., 208, 47 (2000).

    Google Scholar 

  18. A. Hori, T. Ozawa, H. Yoshida, Y. Imori, Y. Kuribayashi, E. Nakano and N. Azuma, Inorg. Chim. Acta., 281, 207 (1998).

    Google Scholar 

  19. A.E. Meier-Callahan, H.B. Gray and Z. Gross, Inorg. Chem., 39, 3605 (2000).

    PubMed  Google Scholar 

  20. R. Codd, C.T. Dillon, A. Levina and P.A. Lay, Coord. Chem. Rev., 216/217, 537 (2001).

    Google Scholar 

  21. J.F. Perez-Benito, C. Arias and R.M. Rodriguez, J. Phys. Chem. A., 105, 1150 (2001).

    Google Scholar 

  22. A.K. Rappe and M. Jaworska, J. Am. Chem. Soc., 125, 13956 (2003).

    PubMed  Google Scholar 

  23. L. Rao, Z. Zhang, J.I. Friese, B. Ritherdon, S.B. Clark, N.J. Hess and D. Rai, J. Chem. Soc., Dalton Trans., 267 (2002).

  24. M. Knoblowitz and J.I. Morrow, Inorg. Chem., 15, 1674 (1976).

    Google Scholar 

  25. J. Leal, B. Garcia and P. Domingo, Coord. Chem. Rev., 173, 79 (1998).

    Google Scholar 

  26. E. Bang and O. Mønsted, Acta Chem. Scand., A38, 281 (1984).

    Google Scholar 

  27. E. Madej, O. Mønsted and P. Kita, J. Chem. Soc., Dalton Trans., 2361 (2002).

  28. J. Eriksen and O. Mønsted, Acta Chem. Scand., A37, 579 (1993).

    Google Scholar 

  29. U.N. Andersen, C.J. McKenzie and G. Bojesen, Inorg. Chem., 34, 1435 (1995).

    Google Scholar 

  30. A. Levina, P.A. Lay and N.E. Dixon, ibid., 39, 385 (2000).

    PubMed  Google Scholar 

  31. M. Krumpolc, B.G. Deboer and J. Roček, J. Am. Chem. Soc., 100, 145 (1978) and refs therein.

    Google Scholar 

  32. B.A. Goodman and J.B. Raynor, Adv. Inorg. Chem. Radiochem., 13, 135 (1970) and refs therein.

    Google Scholar 

  33. H. Fujii, T. Yoshimura and H. Kamada, Inorg. Chem., 36, 1122 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatłas, J., Impert, O., Katafias, A. et al. Kinetics and mechanism of a macrocyclic chromium(III) complex oxidation to chromium(IV) by hexacyanoferrate(III) in strongly alkaline media. Transition Metal Chemistry 29, 634–643 (2004). https://doi.org/10.1007/s11243-004-4991-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-4991-x

Keywords

Navigation