Skip to main content
Log in

DNA-binding and photoactivated cleavage of enantiomeric ruthenium(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A set of enantiomeric RuII complexes Δ- and Λ-[Ru(bpy)2TAPTP](PF6)2(bpy=2,2’-bipyridine, TAPTP=4,5,9,18-tetraazaphenanthreno[9,10-b]triphenylene) have been synthesized and characterized. Binding of both enantiomers to calf thymus DNA has been studied by spectroscopic methods, viscosity, and equilibrium dialysis. The experimental results indicated that both enantiomers bind to DNA by intercalation. Upon irradiation at 302 nm, both enantiomers were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form I to a nicked form II, and obvious enantioselectively was observed on DNA cleavage, the Λ- enantiomer exhibiting higher cleaving efficiency. The mechanisms for DNA cleavage by the two enantiomers are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Hertzberg P.B. Dervan (1982) J. Am. Chem. Soc. 104 313 Occurrence Handle10.1021/ja00365a069

    Article  Google Scholar 

  2. J.K. Barton A.T. Danishefsky J.W. Goldberg (1984) J. Am. Chem. Soc. 106 2172 Occurrence Handle10.1021/ja00319a043

    Article  Google Scholar 

  3. A.E. Friedman J.C. Chambron J.P. Sauvage N.J. Turro J.K. Barton (1992) J. Am. Chem. Soc. 114 5919 Occurrence Handle10.1021/ja00041a002

    Article  Google Scholar 

  4. T.C. Strekas A.D. Baker O.H. Morgan R.J. Morgan (1996) J Coord Chem. 34 77

    Google Scholar 

  5. C. Hiort B. Nordén A. Rodger (1990) J. Am. Chem. Soc. 112 1971 Occurrence Handle10.1021/ja00161a050

    Article  Google Scholar 

  6. J.-G. Liu Q.-L. Zhang L.-N. Ji Y.-Y. Cao X.-F. Shi (2001) Transition Met. Chem. 26 733 Occurrence Handle10.1023/A:1012037312390

    Article  Google Scholar 

  7. Q.-L. Zhang J.-G. Liu H. Xu H. Li J. Liu J.-Z. Liu L.-N. Ji (2002) Transition Met. Chem. 27 149 Occurrence Handle10.1023/A:1013967324592

    Article  Google Scholar 

  8. Kelly J.M., McConnell D.J., OhUigin C., Tossi A.B., A. Kirsch-De Mesmaeker, Masschelein A., Nasielski J. (1987). J. Chem. Soc., Chem. Commun., 1821

  9. Yam V.W.-W., Lo K.K.-W., Cheung K.-K., Kong R.Y.-C. J. Chem. (1997). Soc., Dalton Trans., 2067

  10. J.K. Barton A.L. Raphael (1984) J. Am. Chem. Soc. 106 2466 Occurrence Handle10.1021/ja00320a058

    Article  Google Scholar 

  11. I. Haq P. Lincoln D. Nordén B.Z. Chowdhry J.B. Chairs (1995) J. Am. Chem. Soc. 117 4788 Occurrence Handle10.1021/ja00122a008

    Article  Google Scholar 

  12. K. Naing M. Takahashi M. Taniguchi A. Yamagishi (1995) Inorg. Chem. 34 350 Occurrence Handle10.1021/ic00105a054

    Article  Google Scholar 

  13. S.A. Tysoe R.J. Morgen A.D. Baker T.C. Strekas (1993) J. Phys. Chem. 97 1707 Occurrence Handle10.1021/j100110a038

    Article  Google Scholar 

  14. J.-G. Liu B.-H. Ye Q.-L. Zhang X.-H. Zhou Q.-X. Zhen X. Tian L.-N. Ji (2000) J. Biol. Inorg. Chem. 5 119 Occurrence Handle10.1007/s007750050015 Occurrence Handle10766444

    Article  PubMed  Google Scholar 

  15. J. Marmur (1961) J. Mol. Biol. 3 208

    Google Scholar 

  16. M.E. Reichmann S.A. Rice C.A. Thomas P. Doty (1954) J. Am. Chem. Soc. 76 3047 Occurrence Handle10.1021/ja01640a067

    Article  Google Scholar 

  17. J.K. Barton A.T. Danishefsky J.W. Goldberg (1984) J. Am. Chem. Soc. 106 2172 Occurrence Handle10.1021/ja00319a043

    Article  Google Scholar 

  18. J.B. Chaires N. Dattagupta D.M. Crothers (1982) Biochemistry. 21 3933 Occurrence Handle7126524

    PubMed  Google Scholar 

  19. G. Cohen H. Eisenberg (1969) Biopolymers. 8 45

    Google Scholar 

  20. B.P. Sullivan D.J. Salmon T.J. Meyer (1978) Inorg. Chem. 17 3334

    Google Scholar 

  21. Morgan O., Wang S., Bae S.A., Morgen R.J., Baker A.D., T.C. Strekas and R. Engel. J. Chem. Soc., Dalton Trans., 3773 (1997)

  22. Q.-X. Zhen B.-H. Ye J.-G. Liu Q.-L. Zhang L.-N. Ji (2000) Inorg. Chim. Acta. 303 141

    Google Scholar 

  23. X. Hua A.G. Lappin (1995) Inorg. Chem. 34 992

    Google Scholar 

  24. S. Satyanaryana J.C. Daborusak J.B. Chaires (1993) Biochemistry 32 2573 Occurrence Handle8448115

    PubMed  Google Scholar 

  25. S. Satyanarayana J.C. Dabroniak J.B. Chaires (1992) Biochemistry. 31 9319 Occurrence Handle1390718

    PubMed  Google Scholar 

  26. R.J. Morgan S. Chatterjee A.D. Baker T.C. Strekas (1991) Inorg. Chem. 30 2687 Occurrence Handle10.1021/ic00012a023

    Article  Google Scholar 

  27. Baker A.D., Morgan R.J., Strekas T.C. (1992). J. Chem. Soc., Chem. Commun. 1099

  28. R. Nilsson P.B. Merkel D.R. Kearns (1972) Photochem. Photobiol. 16 117 Occurrence Handle5052678

    PubMed  Google Scholar 

  29. A.U. Khan (1976) J. Phys. Chem. 80 2219

    Google Scholar 

  30. C.C. Cheng S.E. Rokita C.J. Burrows (1993) Angew. Chem., Int. Ed. Engl. 32 277

    Google Scholar 

  31. S.A. Lesko R.J. Lorentzen P.O. Ts’o (1980) Biochemistry. 19 3023 Occurrence Handle6249344

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, QL., Liu, JH., Ren, XZ. et al. DNA-binding and photoactivated cleavage of enantiomeric ruthenium(II) complexes. Transition Met Chem 30, 285–289 (2005). https://doi.org/10.1007/s11243-004-4057-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-4057-0

Keywords

Navigation