Skip to main content
Log in

Kinetics and mechanism of oxidation of substituted benzyl alcohols by polymer supported chromic acid

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The reactions between substituted benzyl alcohols were found to proceed through ester formation. The ester thus formed decomposes in a slow step to produce chromium(IV). Since our oxidant was supported on a polymeric material the intermediate chromium(IV) will further oxidize another molecule of alcohol generating a free radical in a fast step. The free radical subsequently reacts with another oxidant site in the polymeric reagent in a fast step leading to the formation of chromium(V). The intermediate chromium(V) in the last step reacts with alcohol to produce an aldehyde. The activation parameters were also determined and the mechanism is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Nongknrich M.K. Mahanti (1966) Bull. Chem. Soc. Jpn. 69 1403

    Google Scholar 

  2. I. Nongknrich M.K. Mahanti (1995) Bull Chem. Soc. Jpn. 68 3325

    Google Scholar 

  3. Pitre S.V., M.V., Ram Reddy Y.D. (1997) Vankar; J. Chem. Res (S)., 462.

  4. R.C. Larock I Fleming (1991) Comprehensive Organic Synthesis Pergamon Press Oxford

    Google Scholar 

  5. (a) Mancuso A., Huang S.L., Swern D., J. Org. Chem., 43, 2480 (1978); (b) Hirano M., Kurodo H., T. Morimoto Bull. Chem. Soc. Jpn., 63, 2433 (1990); (c) Lou W.X., Lou J.D., Synth. Commun., 767 (1992).

  6. D.B. Dess J.C. Martin (1983) J. Org. Chem. 48 4155 Occurrence Handle10.1021/jo00170a070

    Article  Google Scholar 

  7. Hutchins R.O., Natale N.R., Cook W.J., (1977) Tetrahedron Lett., 4167.

  8. Geethakumari K., Sreekumar K., J. Appl. Polym Sci., 67, 799.

  9. G. Cainelii G. Cardillo M. Orena S. Sardri (1976) J. Am. Chem. Soc. 98 6737 Occurrence Handle10.1021/ja00437a071

    Article  Google Scholar 

  10. T. Brunelet C. Jouitteau G. Gelhard (1986) J. Org. Chem. 51 4016 Occurrence Handle10.1021/jo00371a019

    Article  Google Scholar 

  11. A.J. Buglas S. John Waterhouse (1987) J. Chem. Edu. 64 3712

    Google Scholar 

  12. R.W. Fulmer (1962) J. Org. Chem. 27 4115

    Google Scholar 

  13. (a) Sevcik S., Stamberg J.,, Prochazka M., Coll. Czech. Chem. Comm., 33, 1327 (1968). (b) Tartarelli R., Lucchesi A., Stappato B., Catalysis J., 19, 310 (1970).

  14. J.Y. Tong E.L. King (1960) J. Am. Chem. Soc. 82 3805 Occurrence Handle10.1021/ja01500a001

    Article  Google Scholar 

  15. F.H. Westheimer (1949) Chem. Rev. 45 419 Occurrence Handle10.1021/cr60142a002

    Article  Google Scholar 

  16. J. Rocek A.E. Radkowsky (1968) J. Am. Chem. Soc. 90 2986 Occurrence Handle10.1021/ja01013a059

    Article  Google Scholar 

  17. J.H. Espenson (1964) J. Am. Chem. Soc. 86 5101 Occurrence Handle10.1021/ja01077a012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jawanjal, A.L., Hilage, N.P. Kinetics and mechanism of oxidation of substituted benzyl alcohols by polymer supported chromic acid. Transition Met Chem 30, 290–293 (2005). https://doi.org/10.1007/s11243-004-4055-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-4055-2

Keywords

Navigation