Transition Metal Chemistry

, Volume 30, Issue 1, pp 5–12

Solution 1H n.m.r. of paramagnetic Co2+complexes with dioxobis(carboxymethyl)tetraazamacrocycles

  • Rosa E. Navarro
  • Manuel Cruz-Valenzuela
  • Motomichi Inoue


Paramagnetic shifts in the 1H n.m.r. spectra were observed for high-spin Co2+ complexes with 12--14-membered tetraazamacrocycles incorporating two amide groups and two pendant carboxymethyl groups. The pseudocontact term due to the dipolar interaction between the metal ion and the resonant protons was calculated on the basis of X-ray structures, and the Fermi contact term due to spin delocalization was determined. The ethylenediamine moiety of the ligand molecule is coordinated in an unsymmetric manner, even in solution, and internal motion (involving conformational change of the macrocyclic frame and exchange of coordinate bonds) is much slower than the n.m.r. observation frequency. In the 12-membered macrocyclic complex Co(L12), three of the eight CH2 groups fix their orientation in the n.m.r. time scale; in Co(L13) only one CH2 group fixes its orientation; in Co(L14) all CH2 groups undergo a rapid reorientation. The facility in internal motion increases with the ring size, and shows a correlation with the chemical stabilities of these Co2+ complexes against oxidation; to atmospheric oxygen, Co2+(L12) is the most resistant and Co2+(L14) is the most susceptible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. LaMar, G.N., Horrocks, W.D., Holm, R.H. 1973NMR of Paramagnetic Molecules, Principles and ApplicationsAcademic PressNew YorkGoogle Scholar
  2. Eaton, D.R., Phillips, W.D. 1965Waugh, J.S. eds. Advances in Magnetic ResonanceAcademic PressNew YorkVol. 1 p. 103.Google Scholar
  3. I. Bertini, C. Luchinat and G. Parigi, Solution NMR of Paramagnetic Molecules, Applications to Metallobiomolecules and Models, Elsevier, Amsterdam, 2001.Google Scholar
  4. Szlyk, E., Surdykowski, A., Barwiolek, M., Larsen, E. 2002Polyhedron212711Google Scholar
  5. Bertini, I., Messori, L., Golub, G., Cohen, H., Meyerstein, D. 1995Inorg. Chim. Acta2355Google Scholar
  6. Epperson, J.D., Ming, L.-J., Woosley, B.D., Baker, G.R., Newkome, G.R. 1999Inorg. Chem.384498Google Scholar
  7. Inoue, M.B., Villegas, C.A., Asano, K., Nakamura, M., Inoue, M., Fernando, Q. 1992Inorg. Chem.312480Google Scholar
  8. Inoue, M.B., Oram, P., Andreu-de-Riquer, G., Inoue, M., Borbat, P., Raitsimring, A., Fernando, Q. 1995Inorg. Chem.343528Google Scholar
  9. Inoue, M.B., Navarro, R.E., Landin, I.O., Lopez, D.M., Inoue, M., Fernando, Q. 1998Inorg. Chim. Acta269224Google Scholar
  10. Inoue, M.B., Navarro, R.E., Inoue, M., Fernando, Q. 1995Inorg. Chem.346074Google Scholar
  11. Covington, A.K., Paabo, M., Robinson, R.A., Bates, R.G. 1968Anal. Chem.40700Google Scholar
  12. McConnell, H.M., Robertson, R.E. 1958J. Chem. Phys.271361Google Scholar
  13. Kurland, R.J., McGarvey, B.R. 1970J. Magn. Resonance2286Google Scholar
  14. Happe, J.A., Ward, R.L. 1963J. Chem. Phys.391211Google Scholar
  15. Horrocks, W.D.,Jr., Fischer, R.H.,Jr., Hutchison, J.R., La Mar, G.N. 1966J. Am. Chem. Soc.882436Google Scholar
  16. Horrocks, W.D.,Jr. 1970Inorg. Chem.9690Google Scholar
  17. Horrocks, W.D.,Jr., Hall, D.D. 1971Inorg. Chem.102368Google Scholar
  18. Inoue, M.B., Oram, P., Inoue, M., Fernando, Q. 1996Inorg. Chim. Acta246401Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rosa E. Navarro
    • 1
  • Manuel Cruz-Valenzuela
    • 1
  • Motomichi Inoue
    • 1
  1. 1.Departamento de Investigación en Polímeros y MaterialesUniversidad de SonoraHermosilloMéxico

Personalised recommendations